Suppr超能文献

人工智能辅助下的小鼠虚拟单能量微 CT 成像。

Virtual monoenergetic micro-CT imaging in mice with artificial intelligence.

机构信息

Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium.

Institut de Recherche Expérimentale Et Clinique, Molecular Imaging Radiotherapy and Oncology Lab, UCLouvain, Brussels, Belgium.

出版信息

Sci Rep. 2022 Feb 11;12(1):2324. doi: 10.1038/s41598-022-06172-0.

Abstract

Micro cone-beam computed tomography (µCBCT) imaging is of utmost importance for carrying out extensive preclinical research in rodents. The imaging of animals is an essential step prior to preclinical precision irradiation, but also in the longitudinal assessment of treatment outcomes. However, imaging artifacts such as beam hardening will occur due to the low energetic nature of the X-ray imaging beam (i.e., 60 kVp). Beam hardening artifacts are especially difficult to resolve in a 'pancake' imaging geometry with stationary source and detector, where the animal is rotated around its sagittal axis, and the X-ray imaging beam crosses a wide range of thicknesses. In this study, a seven-layer U-Net based network architecture (vMonoCT) is adopted to predict virtual monoenergetic X-ray projections from polyenergetic X-ray projections. A Monte Carlo simulation model is developed to compose a training dataset of 1890 projection pairs. Here, a series of digital anthropomorphic mouse phantoms was derived from the reference DigiMouse phantom as simulation geometry. vMonoCT was trained on 1512 projection pairs (= 80%) and tested on 378 projection pairs (= 20%). The percentage error calculated for the test dataset was 1.7 ± 0.4%. Additionally, the vMonoCT model was evaluated on a retrospective projection dataset of five mice and one frozen cadaver. It was found that beam hardening artifacts were minimized after image reconstruction of the vMonoCT-corrected projections, and that anatomically incorrect gradient errors were corrected in the cranium up to 15%. Our results disclose the potential of Artificial Intelligence to enhance the µCBCT image quality in biomedical applications. vMonoCT is expected to contribute to the reproducibility of quantitative preclinical applications such as precision irradiations in X-ray cabinets, and to the evaluation of longitudinal imaging data in extensive preclinical studies.

摘要

微锥束计算机断层扫描(µCBCT)成像对于在啮齿动物中进行广泛的临床前研究至关重要。动物成像在进行临床前精确照射之前是必不可少的一步,也是治疗结果的纵向评估。然而,由于 X 射线成像束的低能量性质(即 60 kVp),会出现诸如束硬化之类的成像伪影。在具有固定源和探测器的“煎饼”成像几何形状中,束硬化伪影尤其难以解决,其中动物围绕矢状轴旋转,X 射线成像束穿过广泛的厚度范围。在这项研究中,采用了基于七层 U-Net 的网络架构(vMonoCT),从多能 X 射线投影预测虚拟单能 X 射线投影。开发了蒙特卡罗模拟模型来组成包含 1890 个投影对的训练数据集。在这里,一系列数字拟人化小鼠体模是从参考 DigiMouse 体模作为模拟几何形状衍生而来的。vMonoCT 在 1512 个投影对上进行训练(=80%),在 378 个投影对上进行测试(=20%)。对于测试数据集计算的百分比误差为 1.7±0.4%。此外,还在五只老鼠和一只冷冻尸体的回顾性投影数据集上评估了 vMonoCT 模型。发现,在对 vMonoCT 校正后的投影进行图像重建后,束硬化伪影最小化,并且颅骨中的解剖学不正确的梯度误差最大校正至 15%。我们的结果揭示了人工智能在生物医学应用中增强µCBCT 图像质量的潜力。vMonoCT 有望提高 X 射线柜中的精确照射等定量临床前应用的可重复性,并评估广泛的临床前研究中的纵向成像数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b0e/8837804/a1866f65f7fe/41598_2022_6172_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验