Suppr超能文献

用于三模块可分凸规划的具有更大步长的增广拉格朗日方法的改进混合分解

Modified hybrid decomposition of the augmented Lagrangian method with larger step size for three-block separable convex programming.

作者信息

Sun Min, Wang Yiju

机构信息

1School of Mathematics and Statistics, Zaozhuang University, Zaozhuang, P.R. China.

2School of Management, Qufu Normal University, Qufu, P.R. China.

出版信息

J Inequal Appl. 2018;2018(1):269. doi: 10.1186/s13660-018-1863-z. Epub 2018 Oct 4.

Abstract

The Jacobian decomposition and the Gauss-Seidel decomposition of augmented Lagrangian method (ALM) are two popular methods for separable convex programming. However, their convergence is not guaranteed for three-block separable convex programming. In this paper, we present a modified hybrid decomposition of ALM (MHD-ALM) for three-block separable convex programming, which first updates all variables by a hybrid decomposition of ALM, and then corrects the output by a correction step with constant step size which is much less restricted than the step sizes in similar methods. Furthermore, we show that is the optimal upper bound of the constant step size . The rationality of MHD-ALM is testified by theoretical analysis, including global convergence, ergodic convergence rate, nonergodic convergence rate, and refined ergodic convergence rate. MHD-ALM is applied to solve video background extraction problem, and numerical results indicate that it is numerically reliable and requires less computation.

摘要

增广拉格朗日方法(ALM)的雅可比分解和高斯-赛德尔分解是可分凸规划的两种常用方法。然而,对于三块可分凸规划,它们的收敛性无法保证。在本文中,我们提出了一种用于三块可分凸规划的改进混合分解的ALM(MHD-ALM),它首先通过ALM的混合分解更新所有变量,然后通过具有恒定步长的校正步骤校正输出,该步长比类似方法中的步长限制少得多。此外,我们证明了该恒定步长的最优上界。通过理论分析证明了MHD-ALM的合理性,包括全局收敛性、遍历收敛速率、非遍历收敛速率和精细遍历收敛速率。MHD-ALM被应用于解决视频背景提取问题,数值结果表明它在数值上是可靠的,并且计算量较小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9395/6182414/b70f9bf310fd/13660_2018_1863_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验