Suppr超能文献

一种用于凸规划的严格收缩Peaceman-Rachford分裂方法。

A STRICTLY CONTRACTIVE PEACEMAN-RACHFORD SPLITTING METHOD FOR CONVEX PROGRAMMING.

作者信息

Bingsheng He, Liu Han, Wang Zhaoran, Yuan Xiaoming

机构信息

International Centre of Management Science and Engineering, and Department of Mathematics, Nanjing University, Nanjing, 200093, China. This author was supported by NSFC grant 91130007 and MOEC fund 20110091110004.

Department of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544. This author was supported by NSF grant III-1116730.

出版信息

SIAM J Optim. 2014 Jul;24(3):1011-1040. doi: 10.1137/13090849X.

Abstract

In this paper, we focus on the application of the Peaceman-Rachford splitting method (PRSM) to a convex minimization model with linear constraints and a separable objective function. Compared to the Douglas-Rachford splitting method (DRSM), another splitting method from which the alternating direction method of multipliers originates, PRSM requires more restrictive assumptions to ensure its convergence, while it is always faster whenever it is convergent. We first illustrate that the reason for this difference is that the iterative sequence generated by DRSM is strictly contractive, while that generated by PRSM is only contractive with respect to the solution set of the model. With only the convexity assumption on the objective function of the model under consideration, the convergence of PRSM is not guaranteed. But for this case, we show that the first iterations of PRSM still enable us to find an approximate solution with an accuracy of (1/). A worst-case (1/) convergence rate of PRSM in the ergodic sense is thus established under mild assumptions. After that, we suggest attaching an underdetermined relaxation factor with PRSM to guarantee the strict contraction of its iterative sequence and thus propose a strictly contractive PRSM. A worst-case (1/) convergence rate of this strictly contractive PRSM in a nonergodic sense is established. We show the numerical efficiency of the strictly contractive PRSM by some applications in statistical learning and image processing.

摘要

在本文中,我们专注于将Peaceman-Rachford分裂法(PRSM)应用于具有线性约束和可分目标函数的凸最小化模型。与Douglas-Rachford分裂法(DRSM)相比,乘子交替方向法源自后者,PRSM需要更严格的假设来确保其收敛,而一旦收敛它总是更快。我们首先说明这种差异的原因在于DRSM生成的迭代序列是严格压缩的,而PRSM生成的迭代序列仅相对于模型的解集是压缩的。仅在所考虑模型的目标函数的凸性假设下,PRSM的收敛性无法保证。但对于这种情况,我们表明PRSM的前 次迭代仍然使我们能够找到精度为(1/)的近似解。因此,在温和假设下建立了PRSM在遍历意义上的最坏情况(1/)收敛速率。之后,我们建议给PRSM附加一个欠定松弛因子以保证其迭代序列的严格压缩性,从而提出一种严格压缩的PRSM。建立了这种严格压缩的PRSM在非遍历意义上的最坏情况(1/)收敛速率。我们通过在统计学习和图像处理中的一些应用展示了严格压缩的PRSM的数值效率。

相似文献

3
A convergent relaxation of the Douglas-Rachford algorithm.道格拉斯-拉赫福德算法的收敛松弛。
Comput Optim Appl. 2018;70(3):841-863. doi: 10.1007/s10589-018-9989-y. Epub 2018 Mar 6.
4
Convergence Rates of Forward-Douglas-Rachford Splitting Method.前向道格拉斯-拉赫福德分裂方法的收敛速率
J Optim Theory Appl. 2019;182(2):606-639. doi: 10.1007/s10957-019-01524-9. Epub 2019 Apr 11.

引用本文的文献

1
Heterogeneous Functional Regression for Subgroup Analysis.用于亚组分析的异质性功能回归
J Comput Graph Stat. 2024 Dec 20. doi: 10.1080/10618600.2024.2414113.
3
Denoising Generalized Expectation-Consistent Approximation for MR Image Recovery.用于磁共振图像恢复的去噪广义期望一致逼近
IEEE J Sel Areas Inf Theory. 2022 Sep;3(3):528-542. doi: 10.1109/JSAIT.2022.3207109. Epub 2022 Sep 15.
9

本文引用的文献

1
Fast image recovery using variable splitting and constrained optimization.快速图像恢复使用变量分裂和约束优化。
IEEE Trans Image Process. 2010 Sep;19(9):2345-56. doi: 10.1109/TIP.2010.2047910. Epub 2010 Apr 8.
2
Genome-wide association analysis by lasso penalized logistic regression.基于套索惩罚逻辑回归的全基因组关联分析。
Bioinformatics. 2009 Mar 15;25(6):714-21. doi: 10.1093/bioinformatics/btp041. Epub 2009 Jan 28.
6

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验