Suppr超能文献

使用黑色素瘤研究数据对具有竞争风险的生存回归模型进行模型验证概述。

Overview of model validation for survival regression model with competing risks using melanoma study data.

作者信息

Zhang Zhongheng, Cortese Giuliana, Combescure Christophe, Marshall Roger, Lee Minjung, Lim Hyun Ja, Haller Bernhard

机构信息

Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.

Department of Statistical Sciences, University of Padua, Padua, Italy.

出版信息

Ann Transl Med. 2018 Aug;6(16):325. doi: 10.21037/atm.2018.07.38.

Abstract

The article introduces how to validate regression models in the analysis of competing risks. The prediction accuracy of competing risks regression models can be assessed by discrimination and calibration. The area under receiver operating characteristic curve (AUC) or Concordance-index, and calibration plots have been widely used as measures of discrimination and calibration, respectively. One-time splitting method can be used for randomly splitting original data into training and test datasets. However, this method reduces sample sizes of both training and testing datasets, and the results can be different by different splitting processes. Thus, the cross-validation method is more appealing. For time-to-event data, model validation is performed at each analysis time point. In this article, we review how to perform model validation using the package in R, along with plotting a nomogram for competing risks regression models using the package.

摘要

本文介绍了在竞争风险分析中如何验证回归模型。竞争风险回归模型的预测准确性可通过区分度和校准来评估。受试者操作特征曲线下面积(AUC)或一致性指数,以及校准图分别被广泛用作区分度和校准的度量指标。一次性分割法可用于将原始数据随机分割为训练数据集和测试数据集。然而,这种方法会减小训练和测试数据集的样本量,并且不同的分割过程可能会得到不同的结果。因此,交叉验证方法更具吸引力。对于事件发生时间数据,在每个分析时间点进行模型验证。在本文中,我们回顾了如何使用R中的 包进行模型验证,以及如何使用 包绘制竞争风险回归模型的列线图。

相似文献

2
Validation of competing-risks model in screening for pre-eclampsia in twin pregnancy by maternal factors.
Ultrasound Obstet Gynecol. 2019 May;53(5):649-654. doi: 10.1002/uog.20265.
3
Revised competing-risks model in screening for pre-eclampsia in twin pregnancy by maternal characteristics and medical history.
Ultrasound Obstet Gynecol. 2019 Nov;54(5):617-624. doi: 10.1002/uog.20411. Epub 2019 Oct 14.
4
Nomogram for predicting the survival of patients with malignant melanoma: A population analysis.
Oncol Lett. 2019 Oct;18(4):3591-3598. doi: 10.3892/ol.2019.10720. Epub 2019 Aug 6.
6
Quantitative radiomic biomarkers for discrimination between neuromyelitis optica spectrum disorder and multiple sclerosis.
J Magn Reson Imaging. 2019 Apr;49(4):1113-1121. doi: 10.1002/jmri.26287. Epub 2018 Nov 8.
8
Development and Validation of a Nomogram for Predicting Survival in Male Patients With Breast Cancer.
Front Oncol. 2019 May 14;9:361. doi: 10.3389/fonc.2019.00361. eCollection 2019.
9
Development and validation of a nomogram for predicting cancer-specific survival in patients with Wilms' tumor.
J Cancer. 2019 Aug 28;10(21):5299-5305. doi: 10.7150/jca.32741. eCollection 2019.

引用本文的文献

2
Migrasome-Related Prognostic Genes in Gastric Cancer: A Transcriptomic and Immunotherapeutic Analysis.
Onco Targets Ther. 2025 Aug 13;18:873-897. doi: 10.2147/OTT.S528050. eCollection 2025.
7
Immune infiltration and prognosis in gastric cancer: role of NAD+ metabolism-related markers.
PeerJ. 2024 Jul 31;12:e17833. doi: 10.7717/peerj.17833. eCollection 2024.
8
Transcatheter Aortic Valve Implantation Wait-Time Management: Derivation and Validation of the Canadian TAVI Triage Tool (CAN3T).
J Am Heart Assoc. 2024 Mar 5;13(5):e033768. doi: 10.1161/JAHA.123.033768. Epub 2024 Feb 23.
9
Causes of death among people living with metastatic cancer.
Nat Commun. 2024 Feb 19;15(1):1519. doi: 10.1038/s41467-024-45307-x.

本文引用的文献

1
Nomogram for survival analysis in the presence of competing risks.
Ann Transl Med. 2017 Oct;5(20):403. doi: 10.21037/atm.2017.07.27.
2
Calibration plots for risk prediction models in the presence of competing risks.
Stat Med. 2014 Aug 15;33(18):3191-203. doi: 10.1002/sim.6152. Epub 2014 Mar 25.
3
Comparing predictions among competing risks models with time-dependent covariates.
Stat Med. 2013 Aug 15;32(18):3089-101. doi: 10.1002/sim.5773. Epub 2013 Mar 13.
4
A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions.
J Clin Epidemiol. 2013 Jun;66(6):648-53. doi: 10.1016/j.jclinepi.2012.09.017. Epub 2013 Feb 14.
6
Quantifying the predictive accuracy of time-to-event models in the presence of competing risks.
Biom J. 2011 Feb;53(1):88-112. doi: 10.1002/bimj.201000073. Epub 2011 Jan 14.
8
Tutorial in biostatistics: competing risks and multi-state models.
Stat Med. 2007 May 20;26(11):2389-430. doi: 10.1002/sim.2712.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验