Suppr超能文献

通过二价阳离子控制组氨酸丰富蛋白材料的组装。

Assembly of histidine-rich protein materials controlled through divalent cations.

机构信息

Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.

Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), C/ Monforte de Lemos 3-5, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.

出版信息

Acta Biomater. 2019 Jan 1;83:257-264. doi: 10.1016/j.actbio.2018.10.030. Epub 2018 Oct 24.

Abstract

Nanostructured protein materials show exciting biomedical applications, since both structure and function can be genetically programmed. In particular, self-assembling histidine-rich proteins benefit from functional plasticity that allows the generation of protein-only nanoparticles for cell targeted drug delivery. However, the rational development of constructs with improved functions is limited by a poor control of the oligomerization process. By exploring cross-interactions between histidine-tagged building blocks, we have identified a critical architectonic role of divalent cations. The obtained data instruct about how histidine-rich protein materials can be assembled, disassembled and reassembled within the nanoscale through the stoichiometric manipulation of divalent ions, in a biochemical approach to biomaterials design. STATEMENT OF SIGNIFICANCE: Divalent metal and non-metal cations such as Ni, Cu Ca and Zn have been identified as unexpected molecular tools to control the assembling, disassembling and reassembling of histidine-rich protein materials at the nanoscale. Their stoichiometric manipulation allows generating defined protein-protein cross-molecular contacts between building blocks, for a powerful nano-biochemical manipulation of the material's architecture.

摘要

纳米结构蛋白材料在生物医学领域具有广阔的应用前景,因为其结构和功能都可以通过基因编程来实现。特别是,富含组氨酸的自组装蛋白具有功能可塑性,可以生成仅由蛋白质组成的纳米颗粒,用于靶向细胞的药物传递。然而,由于对低聚化过程的控制不佳,具有改进功能的构建体的合理开发受到限制。通过探索组氨酸标记的构建块之间的交叉相互作用,我们发现二价阳离子具有关键的结构作用。这些数据为我们提供了指导,即如何通过二价离子的化学计量操纵,在纳米尺度上通过生物化学方法设计生物材料,来组装、拆卸和重新组装富含组氨酸的蛋白质材料。

意义

已经确定二价金属和非金属阳离子(如 Ni、Cu、Ca 和 Zn)是意想不到的分子工具,可以控制富含组氨酸的蛋白质材料在纳米尺度上的组装、拆卸和重新组装。通过它们的化学计量操纵,可以在构建块之间生成定义明确的蛋白质-蛋白质交联,从而实现对材料结构的强大纳米生物化学操控。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验