Serna Naroa, López-Laguna Hèctor, Aceituno Patricia, Rojas-Peña Mauricio, Parladé Eloi, Voltà-Durán Eric, Martínez-Torró Carlos, Sánchez Julieta M, Di Somma Angela, Carratalá Jose Vicente, Livieri Andrea L, Ferrer-Miralles Neus, Vázquez Esther, Unzueta Ugutz, Roher Nerea, Villaverde Antonio
Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
Pharmaceutics. 2023 Nov 16;15(11):2632. doi: 10.3390/pharmaceutics15112632.
Both nanostructure and multivalency enhance the biological activities of antimicrobial peptides (AMPs), whose mechanism of action is cooperative. In addition, the efficacy of a particular AMP should benefit from a steady concentration at the local place of action and, therefore, from a slow release after a dynamic repository. In the context of emerging multi-resistant bacterial infections and the urgent need for novel and effective antimicrobial drugs, we tested these concepts through the engineering of four AMPs into supramolecular complexes as pharmacological entities. For that purpose, GWH1, T22, Pt5, and PaD, produced as GFP or human nidogen-based His-tagged fusion proteins, were engineered as self-assembling oligomeric nanoparticles ranging from 10 to 70 nm and further packaged into nanoparticle-leaking submicron granules. Since these materials slowly release functional nanoparticles during their time-sustained unpacking, they are suitable for use as drug depots in vivo. In this context, a particular AMP version (GWH1-NIDO-H6) was selected for in vivo validation in a zebrafish model of a complex bacterial infection. The GWH1-NIDO-H6-secreting protein granules are protective in zebrafish against infection by the multi-resistant bacterium , proving the potential of innovative formulations based on nanostructured and slowly released recombinant AMPs in the fight against bacterial infections.
纳米结构和多价性均可增强抗菌肽(AMPs)的生物活性,其作用机制具有协同性。此外,特定抗菌肽的疗效应得益于作用部位的稳定浓度,因此也应得益于动态储存后的缓慢释放。在多重耐药细菌感染不断出现且迫切需要新型有效抗菌药物的背景下,我们通过将四种抗菌肽设计成超分子复合物作为药理实体来测试这些概念。为此,将作为绿色荧光蛋白(GFP)或基于人巢蛋白的His标签融合蛋白产生的GWH1、T22、Pt5和PaD设计成10至70纳米的自组装寡聚纳米颗粒,并进一步包装成纳米颗粒泄漏的亚微米颗粒。由于这些材料在其持续解包过程中会缓慢释放功能性纳米颗粒,它们适合用作体内药物储存库。在此背景下,选择了一种特定的抗菌肽变体(GWH1-NIDO-H6)在复杂细菌感染的斑马鱼模型中进行体内验证。分泌GWH1-NIDO-H6的蛋白颗粒在斑马鱼中对多重耐药细菌的感染具有保护作用,证明了基于纳米结构和缓慢释放的重组抗菌肽的创新制剂在对抗细菌感染方面的潜力。