Department of Chemistry, Stanford University, Stanford, CA 94305, United States.
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States.
Biosens Bioelectron. 2019 Jan 15;124-125:136-142. doi: 10.1016/j.bios.2018.10.018. Epub 2018 Oct 12.
Aberrant hypermethylation of CpG islands in the promoter region of tumor suppressor genes is a promising biomarker for early cancer detection. This methylation status is reflected in the methylation pattern of ctDNA shed from the primary tumor; however, to realize the full clinical utility of ctDNA methylation detection via liquid biopsy for early cancer diagnosis, improvements in the sensitivity and multiplexability of existing technologies must be improved. Additionally, the assay must be cheap and easy to perform in a clinical setting. We report the integration of methylation specific PCR (MSP) to melt curve analysis on giant magnetoresistive (GMR) biosensors to greatly enhance the sensitivity of our DNA hybridization assay for methylation detection. Our GMR sensor is functionalized with synthetic DNA probes that target methylated or unmethylated CpG sites in the MSP amplicon, and measures the difference in melting temperature (T) between the two probes (ΔT), giving an analytical limit of detection down to 0.1% methylated DNA in solution. Additionally, linear regression of ΔT's for serial dilutions of methylated:unmethylated mixtures allows for quantification of methylation percentage, which could have diagnostic and prognostic utility. Lastly, we performed multiplexed MSP on two different genes, and show the ability of our GMR assay to resolve this mixture, despite their amplicons' overlapping T's in standard EvaGreen melt analysis. The multiplexing ability of our assay and its enhanced sensitivity, without necessitating deep sequencing, represent important steps toward realizing an assay for the detection of methylated ctDNA in plasma for early cancer detection in a clinical setting.
肿瘤抑制基因启动子区域 CpG 岛的异常甲基化是早期癌症检测有前途的生物标志物。这种甲基化状态反映在源自原发性肿瘤的 ctDNA 中;然而,为了实现通过液体活检进行 ctDNA 甲基化检测在早期癌症诊断中的充分临床应用,必须提高现有技术的灵敏度和多重性。此外,该检测必须便宜且易于在临床环境中进行。我们报告了将甲基化特异性 PCR (MSP) 与巨磁电阻 (GMR) 生物传感器上的熔解曲线分析相结合,以大大提高我们用于甲基化检测的 DNA 杂交检测的灵敏度。我们的 GMR 传感器用针对 MSP 扩增子中甲基化或非甲基化 CpG 位点的合成 DNA 探针进行功能化,并测量两个探针之间的熔点 (T) 差异 (ΔT),给出低至 0.1% 溶液中甲基化 DNA 的分析检测限。此外,对甲基化:非甲基化混合物的系列稀释进行 ΔT 的线性回归允许对甲基化百分比进行定量,这可能具有诊断和预后效用。最后,我们对两个不同的基因进行了多重 MSP,并展示了我们的 GMR 检测能够分辨这种混合物的能力,尽管它们的扩增子在标准 EvaGreen 熔解分析中的 T 重叠。我们的检测方法的多重检测能力及其增强的灵敏度,而无需进行深度测序,代表着朝着在临床环境中检测血浆中甲基化 ctDNA 以进行早期癌症检测的检测方法迈出的重要一步。