Suppr超能文献

利用集合经验模态分解研究陆面温度的多时标时间模式和动态变化。

The multi-timescale temporal patterns and dynamics of land surface temperature using Ensemble Empirical Mode Decomposition.

机构信息

School of Urban Design, Wuhan University, Wuhan 430072, China; Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China.

School of Urban Design, Wuhan University, Wuhan 430072, China; Collaborative Innovation Center of Geospatial Technology, Wuhan 430079, China.

出版信息

Sci Total Environ. 2019 Feb 20;652:243-255. doi: 10.1016/j.scitotenv.2018.10.252. Epub 2018 Oct 21.

Abstract

Temporal variation patterns of Land Surface Temperature (LST) under different time scales are crucial in understanding the response of urban thermal environment to different forcings. However, there is no integrated toolset to extract such patterns from satellite remotely sensed time series LST (TSLST) data. This paper presents a workflow to extract the multi-timescale temporal patterns and dynamics from nonlinear and non-stationary TSLST data by taking Wuhan, China as case study. The 8-day MODerate-resolution Imaging Spectroradiometer (MODIS) satellite image products spanning the 2003-2017 period are used to generate a TSLST dataset with continuous and smooth surfaces on the monthly basis through the non-parametric Multi-Task Gaussian Process Modeling (MTGP). The study area is segmented into multiple time series clusters by k-means to bridge with urban planning in terms of research and implementation scale. Then, temporal patterns including annual, interannual components, and overall trends are reconstructed based on the components with characteristic time scales decomposed by the adaptive Ensemble Empirical Mode Decomposition (EEMD) method. The generated patterns of the 17 time series clusters are interpreted from the perspective of earth revolution, meteorological cycles and urbanization. Specifically, the annual components which are mainly generated by earth revolution reveal consistent rhythmic patterns among the time series. The interannual components preserve similar shapes although they differ in amplitudes. The overall shape is basically consistent with that of air temperature of Central China, which may be mainly induced by the El Niño-Southern Oscillation (ENSO) phenomenon. The overall trends which exert considerable differences are grouped into three types by shape. Such differences may be potentially caused by the inconsistent levels of localized urbanization, afforestation or circular economy development. This study facilitates the understanding of TSLST patterns and human-environment interactions. The proposed workflow can be utilized for other cities and potentially used for comparison among different cities.

摘要

不同时间尺度下的地表温度(LST)时间变化模式对于理解城市热环境对不同驱动力的响应至关重要。然而,目前还没有一个综合的工具集可以从卫星遥感时间序列 LST(TSLST)数据中提取这些模式。本文以中国武汉为例,提出了一种从非线性和非平稳 TSLST 数据中提取多时间尺度时间模式和动态变化的工作流程。该研究使用了 2003-2017 年期间的 8 天 MODerate-resolution Imaging Spectroradiometer(MODIS)卫星图像产品,通过非参数多任务高斯过程建模(MTGP)生成了一个具有每月连续平滑表面的 TSLST 数据集。通过 k-均值将研究区域划分为多个时间序列聚类,以在研究和实施规模方面与城市规划相衔接。然后,基于自适应集合经验模态分解(EEMD)方法分解出具有特征时间尺度的分量,重建包括年际、年际分量和总体趋势在内的时间模式。从地球公转、气象周期和城市化的角度解释了 17 个时间序列聚类的生成模式。具体来说,主要由地球公转产生的年际分量揭示了时间序列之间一致的节奏模式。尽管幅度不同,但年际分量保留了相似的形状。总体形状与中国中部地区气温的形状基本一致,这可能主要是由厄尔尼诺-南方涛动(ENSO)现象引起的。总体趋势存在显著差异,按形状分为三类。这种差异可能是由局部城市化、绿化或循环经济发展水平不一致造成的。本研究有助于理解 TSLST 模式和人类与环境的相互作用。所提出的工作流程可用于其他城市,并可用于不同城市之间的比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验