School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China.
Engineering Research Center for Geo-Informatics and Digital Technology Authorized by National Administration of Surveying, Mapping and Geoinformation, Wuhan 430079, China.
Sensors (Basel). 2018 Oct 25;18(11):3619. doi: 10.3390/s18113619.
Due to the rapid installation of a massive number of fixed and mobile sensors, monitoring machines are intentionally or unintentionally involved in the production of a large amount of geospatial data. Environmental sensors and related software applications are rapidly altering human lifestyles and even impacting ecological and human health. However, there are rarely specific geospatial sensor web (GSW) applications for certain ecological public health questions. In this paper, we propose an ontology-driven approach for integrating intelligence to manage human and ecological health risks in the GSW. We design a Human and Ecological health Risks Ontology (HERO) based on a semantic sensor network ontology template. We also illustrate a web-based prototype, the Human and Ecological Health Risk Management System (HaEHMS), which helps health experts and decision makers to estimate human and ecological health risks. We demonstrate this intelligent system through a case study of automatic prediction of air quality and related health risk.
由于大量固定和移动传感器的快速安装,监测机器有意或无意地参与了大量地理空间数据的生成。环境传感器和相关的软件应用程序正在迅速改变人类的生活方式,甚至影响生态和人类健康。然而,针对某些生态公共卫生问题,很少有特定的地理空间传感器网络 (GSW) 应用。在本文中,我们提出了一种基于本体的方法,通过整合智能来管理 GSW 中的人类和生态健康风险。我们基于语义传感器网络本体模板设计了一个人类和生态健康风险本体 (HERO)。我们还展示了一个基于网络的原型,即人类和生态健康风险管理系统 (HaEHMS),它可以帮助健康专家和决策者估计人类和生态健康风险。我们通过空气质量和相关健康风险自动预测的案例研究来展示这个智能系统。