文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多组学肿瘤数据揭示了与生存相关的分子机制多样性。

Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival.

机构信息

Department of Pathology, Stanford University, Stanford, CA, 94305, USA.

Department of Computer Science, Stanford University, Stanford, CA, 94305, USA.

出版信息

Nat Commun. 2018 Oct 26;9(1):4453. doi: 10.1038/s41467-018-06921-8.


DOI:10.1038/s41467-018-06921-8
PMID:30367051
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6203719/
Abstract

Outcomes for cancer patients vary greatly even within the same tumor type, and characterization of molecular subtypes of cancer holds important promise for improving prognosis and personalized treatment. This promise has motivated recent efforts to produce large amounts of multidimensional genomic (multi-omic) data, but current algorithms still face challenges in the integrated analysis of such data. Here we present Cancer Integration via Multikernel Learning (CIMLR), a new cancer subtyping method that integrates multi-omic data to reveal molecular subtypes of cancer. We apply CIMLR to multi-omic data from 36 cancer types and show significant improvements in both computational efficiency and ability to extract biologically meaningful cancer subtypes. The discovered subtypes exhibit significant differences in patient survival for 27 of 36 cancer types. Our analysis reveals integrated patterns of gene expression, methylation, point mutations, and copy number changes in multiple cancers and highlights patterns specifically associated with poor patient outcomes.

摘要

即使在同一肿瘤类型中,癌症患者的预后也有很大差异,因此对癌症分子亚型进行特征描述对于改善预后和实现个体化治疗具有重要意义。这种前景促使人们最近努力产生大量多维基因组(多组学)数据,但目前的算法在对这些数据进行综合分析时仍然面临挑战。在这里,我们提出了通过多核学习进行癌症整合(Cancer Integration via Multikernel Learning,CIMLR),这是一种新的癌症亚型分类方法,可整合多组学数据以揭示癌症的分子亚型。我们将 CIMLR 应用于 36 种癌症的多组学数据,结果表明在计算效率和提取生物学意义上的癌症亚型的能力方面都有显著提高。对于 36 种癌症中的 27 种,所发现的亚型在患者生存方面存在显著差异。我们的分析揭示了多种癌症中基因表达、甲基化、点突变和拷贝数变化的综合模式,并突出了与患者预后不良特别相关的模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/6203719/a32f93c05a10/41467_2018_6921_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/6203719/42965549b10a/41467_2018_6921_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/6203719/a3fff1a257f9/41467_2018_6921_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/6203719/7689f3e7198e/41467_2018_6921_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/6203719/90c7a3ebfd53/41467_2018_6921_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/6203719/076f4d7fe32d/41467_2018_6921_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/6203719/a32f93c05a10/41467_2018_6921_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/6203719/42965549b10a/41467_2018_6921_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/6203719/a3fff1a257f9/41467_2018_6921_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/6203719/7689f3e7198e/41467_2018_6921_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/6203719/90c7a3ebfd53/41467_2018_6921_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/6203719/076f4d7fe32d/41467_2018_6921_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/6203719/a32f93c05a10/41467_2018_6921_Fig6_HTML.jpg

相似文献

[1]
Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival.

Nat Commun. 2018-10-26

[2]
COPS: A novel platform for multi-omic disease subtype discovery via robust multi-objective evaluation of clustering algorithms.

PLoS Comput Biol. 2024-8

[3]
Multi-omic and multi-view clustering algorithms: review and cancer benchmark.

Nucleic Acids Res. 2018-11-16

[4]
MOSClip: multi-omic and survival pathway analysis for the identification of survival associated gene and modules.

Nucleic Acids Res. 2019-8-22

[5]
Multilevel omic data clustering reveals variable contribution of methylator phenotype to integrative cancer subtypes.

Epigenomics. 2018-6-13

[6]
MethCNA: a database for integrating genomic and epigenomic data in human cancer.

BMC Genomics. 2018-2-13

[7]
Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets.

Brief Bioinform. 2021-5-20

[8]
Supervised Graph Clustering for Cancer Subtyping Based on Survival Analysis and Integration of Multi-Omic Tumor Data.

IEEE/ACM Trans Comput Biol Bioinform. 2022

[9]
Pan-cancer subtyping in a 2D-map shows substructures that are driven by specific combinations of molecular characteristics.

Sci Rep. 2016-4-25

[10]
Characterization of cancer subtypes associated with clinical outcomes by multi-omics integrative clustering.

Comput Biol Med. 2023-8

引用本文的文献

[1]
Multiomics Signature Reveals Network Regulatory Mechanisms in a CRC Continuum.

Int J Mol Sci. 2025-7-23

[2]
Ovarian Cancer: Multi-Omics Data Integration.

Int J Mol Sci. 2025-6-21

[3]
Integrating multi-omics data to optimize immunotherapy in endometrial cancer: a comprehensive study.

Discov Oncol. 2025-6-20

[4]
GAIN-BRCA: a graph-based AI-net framework for breast cancer subtype classification using multiomics data.

Bioinform Adv. 2025-5-14

[5]
EMitool: Explainable Multi-Omics Integration for Disease Subtyping.

Int J Mol Sci. 2025-4-30

[6]
Prognostic Biomarkers in Breast Cancer via Multi-Omics Clustering Analysis.

Int J Mol Sci. 2025-2-24

[7]
Artificial intelligence in the management of metabolic disorders: a comprehensive review.

J Endocrinol Invest. 2025-2-19

[8]
Multimodal data integration in early-stage breast cancer.

Breast. 2025-4

[9]
Multi-view multi-level contrastive graph convolutional network for cancer subtyping on multi-omics data.

Brief Bioinform. 2024-11-22

[10]
T-cell Receptor Repertoire Analysis in the Context of Transarterial Chemoembolization Synergy with Systemic Therapy for Hepatocellular Carcinoma.

J Clin Transl Hepatol. 2025-1-28

本文引用的文献

[1]
Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer.

Cell. 2018-4-5

[2]
Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours.

Nature. 2018-2-28

[3]
Perturbation-response genes reveal signaling footprints in cancer gene expression.

Nat Commun. 2018-1-2

[4]
Significant associations between driver gene mutations and DNA methylation alterations across many cancer types.

PLoS Comput Biol. 2017-11-10

[5]
A novel approach for data integration and disease subtyping.

Genome Res. 2017-10-24

[6]
Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma.

Cell. 2017-6-15

[7]
Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning.

Nat Methods. 2017-3-6

[8]
Simultaneous discovery of cancer subtypes and subtype features by molecular data integration.

Bioinformatics. 2016-9-1

[9]
Comprehensive analyses of tumor immunity: implications for cancer immunotherapy.

Genome Biol. 2016-8-22

[10]
Downregulation of Ubiquitin-conjugating Enzyme UBE2D3 Promotes Telomere Maintenance and Radioresistance of Eca-109 Human Esophageal Carcinoma Cells.

J Cancer. 2016-6-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索