Department of Computer Science, Stanford University, Stanford, California, USA.
Department of Electrical Engineering, Stanford University, Stanford, California, USA.
Nat Methods. 2017 Apr;14(4):414-416. doi: 10.1038/nmeth.4207. Epub 2017 Mar 6.
We present single-cell interpretation via multikernel learning (SIMLR), an analytic framework and software which learns a similarity measure from single-cell RNA-seq data in order to perform dimension reduction, clustering and visualization. On seven published data sets, we benchmark SIMLR against state-of-the-art methods. We show that SIMLR is scalable and greatly enhances clustering performance while improving the visualization and interpretability of single-cell sequencing data.
我们提出了通过多核学习进行单细胞解析(SIMLR),这是一个分析框架和软件,它从单细胞 RNA-seq 数据中学习相似度度量,以进行降维、聚类和可视化。在七个已发表的数据集中,我们将 SIMLR 与最先进的方法进行了基准测试。我们表明,SIMLR 具有可扩展性,并大大提高了聚类性能,同时改善了单细胞测序数据的可视化和可解释性。
Proteomics. 2018-1
IEEE/ACM Trans Comput Biol Bioinform. 2020
Methods Mol Biol. 2020
Brief Bioinform. 2019-11-27
Cell Syst. 2019-9-11
BMC Bioinformatics. 2016-8-23
Commun Biol. 2025-8-6
Bioinformatics. 2025-7-1
Research (Wash D C). 2025-6-27
Bioinformatics. 2025-7-1
Nat Commun. 2025-5-19
Genomics Inform. 2025-5-17