Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
Nat Commun. 2018 Oct 26;9(1):4459. doi: 10.1038/s41467-018-06903-w.
Interactions between metal nanoparticles and support materials can strongly influence the performance of catalysts. In particular, reducible oxidic supports can form suboxides that can decorate metal nanoparticles and enhance catalytic performance or block active sites. Therefore, tuning this metal-support interaction is essential for catalyst design. Here, we investigate reduction-oxidation-reduction (ROR) treatments as a method to affect metal-support interactions and related catalytic performance. Controlled oxidation of pre-reduced cobalt on reducible (TiO and NbO) and irreducible (α-AlO) supports leads to the formation of hollow cobalt oxide particles. The second reduction results in a twofold increase in cobalt surface area only on reducible oxides and proportionally enhances the cobalt-based catalytic activity during Fischer-Tropsch synthesis at industrially relevant conditions. Such activities are usually only obtained by noble metal promotion of cobalt catalysts. ROR proves an effective approach to tune the interaction between metallic nanoparticles and reducible oxidic supports, leading to improved catalytic performance.
金属纳米粒子与载体材料之间的相互作用会强烈影响催化剂的性能。特别是可还原的氧化载体可以形成亚氧化物,从而修饰金属纳米粒子并提高催化性能或阻止活性位。因此,调节这种金属-载体相互作用对于催化剂设计至关重要。在这里,我们研究了还原-氧化-还原(ROR)处理作为一种影响金属-载体相互作用和相关催化性能的方法。在可还原(TiO 和 NbO)和不可还原(α-AlO)载体上对预还原的钴进行控制氧化,导致形成空心钴氧化物颗粒。第二次还原仅在可还原氧化物上导致钴表面积增加两倍,并在工业相关条件下的费托合成过程中相应地提高了基于钴的催化活性。通常只有通过贵金属促进钴催化剂才能获得这种活性。ROR 被证明是一种有效的方法,可以调节金属纳米粒子与可还原氧化载体之间的相互作用,从而提高催化性能。