Xiong Pei, Xu Zhihang, Wu Tai-Sing, Yang Tong, Lei Qiong, Li Jiangtong, Li Guangchao, Yang Ming, Soo Yun-Liang, Bennett Robert David, Lau Shu Ping, Tsang Shik Chi Edman, Zhu Ye, Li Molly Meng-Jung
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
Nat Commun. 2024 Jan 10;15(1):420. doi: 10.1038/s41467-024-44705-5.
Designing high-performance thermal catalysts with stable catalytic sites is an important challenge. Conventional wisdom holds that strong metal-support interactions can benefit the catalyst performance, but there is a knowledge gap in generalizing this effect across different metals. Here, we have successfully developed a generalizable strong metal-support interaction strategy guided by Tammann temperatures of materials, enabling functional oxide encapsulation of transition metal nanocatalysts. As an illustrative example, Co@BaAlO core@shell is synthesized and tracked in real-time through in-situ microscopy and spectroscopy, revealing an unconventional strong metal-support interaction encapsulation mechanism. Notably, Co@BaAlO exhibits exceptional activity relative to previously reported core@shell catalysts, displaying excellent long-term stability during high-temperature chemical reactions and overcoming the durability and reusability limitations of conventional supported catalysts. This pioneering design and widely applicable approach has been validated to guide the encapsulation of various transition metal nanoparticles for environmental tolerance functionalities, offering great potential to advance energy, catalysis, and environmental fields.
设计具有稳定催化位点的高性能热催化剂是一项重大挑战。传统观点认为,强金属-载体相互作用有利于催化剂性能,但在将这种效应推广到不同金属方面存在知识空白。在此,我们成功开发了一种以材料的坦曼温度为指导的可推广的强金属-载体相互作用策略,实现了过渡金属纳米催化剂的功能氧化物封装。作为一个示例,合成了Co@BaAlO核壳结构,并通过原位显微镜和光谱进行实时跟踪,揭示了一种非常规的强金属-载体相互作用封装机制。值得注意的是,相对于先前报道的核壳催化剂,Co@BaAlO表现出卓越的活性,在高温化学反应中显示出优异的长期稳定性,克服了传统负载型催化剂的耐久性和可重复使用性限制。这种开创性的设计和广泛适用的方法已被验证可指导各种过渡金属纳米颗粒的封装以实现环境耐受性功能,为推动能源、催化和环境领域发展提供了巨大潜力。