Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Nat Commun. 2018 Oct 26;9(1):4461. doi: 10.1038/s41467-018-06740-x.
Fluorescence in situ hybridization (FISH) is the primary technology used to image and count mRNA in single cells, but applications of the technique are limited by photophysical shortcomings of organic dyes. Inorganic quantum dots (QDs) can overcome these problems but years of development have not yielded viable QD-FISH probes. Here we report that macromolecular size thresholds limit mRNA labeling in cells, and that a new generation of compact QDs produces accurate mRNA counts. Compared with dyes, compact QD probes provide exceptional photostability and more robust transcript quantification due to enhanced brightness. New spectrally engineered QDs also allow quantification of multiple distinct mRNA transcripts at the single-molecule level in individual cells. We expect that QD-FISH will particularly benefit high-resolution gene expression studies in three dimensional biological specimens for which quantification and multiplexing are major challenges.
荧光原位杂交(FISH)是用于对单个细胞中的 mRNA 进行成像和计数的主要技术,但该技术的应用受到有机染料光物理缺点的限制。 无机量子点(QD)可以克服这些问题,但多年的发展并没有产生可行的 QD-FISH 探针。 在这里,我们报告说,大分子尺寸阈值限制了细胞中的 mRNA 标记,并且新一代紧凑型 QD 产生了准确的 mRNA 计数。 与染料相比,由于增强的亮度,紧凑型 QD 探针提供了出色的光稳定性和更稳健的转录定量。 新的光谱工程化 QD 还允许在单个细胞中单分子水平上对多个不同的 mRNA 转录本进行定量。 我们预计,QD-FISH 将特别有益于在三维生物标本中进行高分辨率基因表达研究,因为定量和多重检测是主要挑战。