Han Zhiyuan, Vaidya Rohit M, Arogundade Opeyemi H, Ma Liang, Zahid Mohammad U, Sarkar Suresh, Kuo Chia-Wei, Selvin Paul R, Smith Andrew M
Department of Materials Science and Engineering and Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Chem Mater. 2022 May 24;34(10):4621-4632. doi: 10.1021/acs.chemmater.2c00498. Epub 2022 May 9.
Quantum dots (QDs) are a class of semiconductor nanocrystal used broadly as fluorescent emitters for analytical studies in the life sciences. These nanomaterials are particularly valuable for single-particle imaging and tracking applications in cells and tissues. An ongoing technological goal is to reduce the hydrodynamic size of QDs to enhance access to sterically hindered biological targets. Multidentate polymer coatings are a focus of these efforts and have resulted in compact and stable QDs with hydrodynamic diameters near 10 nm. New developments are needed to reach smaller sizes to further enhance transport through pores in cells and tissues. Here, we describe how structural characteristics of linear multidentate copolymers determine hydrodynamic size, colloidal stability, and biomolecular interactions of coated QDs. We tune copolymer composition, degree of polymerization, and hydrophilic group length, and coat polymers on CdSe and (core)shell (HgCdSe)CdZnS QDs. We find that a broad range of polymer structures and compositions yield stable colloidal dispersions; however, hydrodynamic size minimization and nonspecific binding resistance can only be simultaneously achieved within a narrow range of properties, requiring short polymers, balanced compositions, and small nanocrystals. In quantitative single-molecule imaging assays in synapses of live neurons, size reduction progressively increases labeling specificity of neurotransmitter receptors. Our findings provide a design roadmap to next-generation QDs with sizes approaching fluorescent protein labels that are the standard of many live-cell biomolecular studies.
量子点(QDs)是一类半导体纳米晶体,广泛用作生命科学分析研究中的荧光发射体。这些纳米材料对于细胞和组织中的单粒子成像和追踪应用尤为重要。一个持续的技术目标是减小量子点的流体动力学尺寸,以增强对空间位阻生物靶点的可达性。多齿聚合物涂层是这些努力的重点,已产生流体动力学直径接近10纳米的致密且稳定的量子点。需要新的进展来达到更小的尺寸,以进一步增强通过细胞和组织孔隙的传输。在这里,我们描述了线性多齿共聚物的结构特征如何决定涂层量子点的流体动力学尺寸、胶体稳定性和生物分子相互作用。我们调整共聚物组成、聚合度和亲水基团长度,并将聚合物包覆在CdSe和(核)壳(HgCdSe)CdZnS量子点上。我们发现,广泛的聚合物结构和组成能产生稳定的胶体分散体;然而,流体动力学尺寸最小化和非特异性结合抗性只能在狭窄的性能范围内同时实现,这需要短聚合物、平衡的组成和小纳米晶体。在活神经元突触的定量单分子成像分析中,尺寸减小逐渐提高神经递质受体的标记特异性。我们的研究结果为下一代量子点提供了一个设计路线图,其尺寸接近荧光蛋白标签,而荧光蛋白标签是许多活细胞生物分子研究的标准。