Suppr超能文献

采用双能量光谱 CT 检测肺腺癌中表皮生长因子受体突变。

Identification of epidermal growth factor receptor mutations in pulmonary adenocarcinoma using dual-energy spectral computed tomography.

机构信息

Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Eur Radiol. 2019 Jun;29(6):2989-2997. doi: 10.1007/s00330-018-5756-9. Epub 2018 Oct 26.

Abstract

OBJECTIVES

To explore the role of dual-energy spectral computed tomography (DESCT) quantitative characteristics for the identification of epidermal growth factor receptor (EGFR) mutation status in a cohort of East Asian patients with pulmonary adenocarcinoma.

MATERIALS AND METHODS

Patients with lung adenocarcinoma who underwent both DESCT chest examination and EGFR test were retrospectively selected from our institution's database. The DESCT visual morphological features and quantitative parameters, including the CT number at 70 keV, normalized iodine concentration (NIC), normalized water concentration, and slopes of the spectral attenuation curves (slope λ HU [Hounsfield unit]), were evaluated or calculated. The patients were divided into two groups: the EGFR mutation group and EGFR wild-type group. Statistical analyses were performed to identify the DESCT quantitative parameters for diagnosis of EGFR mutation status.

RESULTS

EGFR mutations were detected in 66 (55.0%) of the 120 enrolled patients. The univariate analysis revealed that sex, smoking history, CT texture, NIC, and slope λ HU were significantly associated with EGFR mutation status (p = 0.037, 0.001, 0.047, 0.010, and 0.018, respectively). The multivariate logistic analysis revealed that smoking history (odds ratio [OR] = 3.23, p = 0.005) and NIC (OR = 58.026, p = 0.049) were the two significant predictive factors associated with EGFR mutations. Based on this analysis, the smoking history and NIC were combined to determine the predictive value for EGFR mutations with the area under the curve of 0.702.

CONCLUSIONS

NIC may be a potential quantitative DESCT parameter for predicting EGFR mutations in patients with pulmonary adenocarcinoma.

KEY POINTS

• DESCT can provide multiple quantitative image parameters compared to conventional CT. • Identification of the radio-genomic relation between DESCT and EGFR status can help to define molecular subcategories of lung adenocarcinoma, which is valuable for personalized clinical targeted therapy. • NIC may be a potential DESCT quantitative parameter for predicting EGFR mutations in pulmonary adenocarcinoma.

摘要

目的

探讨双能量光谱 CT(DESCT)定量特征在东亚肺腺癌患者表皮生长因子受体(EGFR)突变状态识别中的作用。

材料与方法

从本机构数据库中回顾性选择接受 DESCT 胸部检查和 EGFR 检测的肺腺癌患者。评估或计算 DESCT 视觉形态特征和定量参数,包括 70keV 的 CT 数、标准化碘浓度(NIC)、标准化水浓度以及光谱衰减曲线的斜率(斜率 λ HU [亨斯菲尔德单位])。将患者分为 EGFR 突变组和 EGFR 野生型组。进行统计学分析以确定 DESCT 定量参数用于诊断 EGFR 突变状态。

结果

在纳入的 120 名患者中,检测到 66 例(55.0%)EGFR 突变。单因素分析显示,性别、吸烟史、CT 纹理、NIC 和斜率 λ HU 与 EGFR 突变状态显著相关(p=0.037、0.001、0.047、0.010 和 0.018)。多因素逻辑回归分析显示,吸烟史(比值比[OR] = 3.23,p = 0.005)和 NIC(OR = 58.026,p = 0.049)是与 EGFR 突变相关的两个显著预测因素。基于该分析,将吸烟史和 NIC 结合起来确定 EGFR 突变的预测价值,曲线下面积为 0.702。

结论

NIC 可能是预测肺腺癌患者 EGFR 突变的潜在定量 DESCT 参数。

关键点

  1. DESCT 与常规 CT 相比,可以提供多个定量图像参数。

  2. 确定 DESCT 与 EGFR 状态之间的放射基因组关系可以帮助确定肺腺癌的分子亚类,这对于个性化临床靶向治疗具有重要价值。

  3. NIC 可能是预测肺腺癌 EGFR 突变的潜在定量 DESCT 参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验