Ma Jing-Wen, Jiang Xu, Wang Yan-Mei, Jiang Jiu-Ming, Miao Lei, Qi Lin-Lin, Zhang Jia-Xing, Wen Xin, Li Jian-Wei, Li Meng, Zhang Li
Department of Diagnostic Radiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Department of Radiology, State Key Laboratory of Cardiovascular Disease, National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #167 Bei-Li-Shi Street, Beijing 100037, China.
Heliyon. 2024 Jan 12;10(2):e24372. doi: 10.1016/j.heliyon.2024.e24372. eCollection 2024 Jan 30.
Patients with epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma (LUAD) can benefit from individualized targeted therapy. This study aims to develop, compare, analyse prediction models based on dual-energy spectral computed tomography (DESCT) and CT-based radiomic features to non-invasively predict EGFR mutation status in LUAD.
Patients with LUAD (n = 175), including 111 patients with and 64 patients without EGFR mutations, were enrolled in the current study. All patients were randomly divided into a training dataset (122 cases) and validation dataset (53 cases) at a ratio of 7:3. After extracting CT-based radiomic, DESCT and clinical features, we built seven prediction models and a nomogram of the best prediction. Receiver operating characteristic (ROC) curves and the mean area under the curve (AUC) values were used for comparisons among the models to obtain the best prediction model for predicting EGFR mutations.
The best distinguishing ability is the combined model incorporating radiomic, DESCT and clinical features for predicting the EGFR mutation status with an AUC of 0.86 (95 % CI: 0.79-0.92) in the training group and an AUC value of 0.83 (95 % CI: 0.73, 0.96) in the validation group.
Our study provides a predictive nomogram non-invasively with a combination of CT-based radiomic, DESCT and clinical features, which can provide image-based biological information for targeted therapy of LUAD with EGFR mutations.
肺腺癌(LUAD)中表皮生长因子受体(EGFR)突变的患者可从个体化靶向治疗中获益。本研究旨在开发、比较和分析基于双能谱计算机断层扫描(DESCT)和基于CT的放射组学特征的预测模型,以无创预测LUAD中的EGFR突变状态。
本研究纳入了175例LUAD患者,其中111例有EGFR突变,64例无EGFR突变。所有患者按7:3的比例随机分为训练数据集(122例)和验证数据集(53例)。在提取基于CT的放射组学、DESCT和临床特征后,我们建立了7个预测模型和一个最佳预测的列线图。采用受试者操作特征(ROC)曲线和曲线下平均面积(AUC)值对模型进行比较,以获得预测EGFR突变的最佳预测模型。
区分能力最佳的是结合放射组学、DESCT和临床特征的联合模型,用于预测EGFR突变状态,训练组的AUC为0.86(95%CI:0.79-0.92),验证组的AUC值为0.83(95%CI:0.73,0.96)。
我们的研究提供了一种基于CT的放射组学、DESCT和临床特征相结合的无创预测列线图,可为LUAD伴EGFR突变的靶向治疗提供基于图像的生物学信息。