Suppr超能文献

通过综合生物信息学分析鉴定高级别前列腺癌的潜在 miRNA 生物标志物。

Identification of Potential miRNAs Biomarkers for High-Grade Prostate Cancer by Integrated Bioinformatics Analysis.

机构信息

Labco Diagnostics, SYNLAB Group, Barcelona, Catalonia, Spain.

Department of Biochemistry and Molecular Genetics (CDB), Hospital Clínic, IDIBAPS, C/ Villarroel, 170, 08036, Barcelona, Catalonia, Spain.

出版信息

Pathol Oncol Res. 2019 Oct;25(4):1445-1456. doi: 10.1007/s12253-018-0508-3. Epub 2018 Oct 26.

Abstract

The increasing number of datasets available in the GEO database offers a new approach to identify new miRNAs related to PCa. The aim of our study was to suggest a miRNA signature for the detection of high-grade PCa (Gleason score ≥ 7) using bioinformatics tools. Three mRNA datasets (GSE26022, GSE30521, GSE46602) were selected to identify the differentially expressed genes (DEGs) in high-grade PCa. Furthermore, two miRNA datasets (GSE45604, GSE46738) were analyzed to select the differentially expressed miRNAs (DEMs). Functional and pathway enrichment analysis was performed using DAVID and a protein-protein interaction network (PPI) was constructed through STRING. Besides, miRNAs which regulate hub genes were predicted using microRNA.org . A total of 973 DEGs were identified after the analyses of the mRNA datasets, enriched in key mechanisms underlying PCa development. Furthermore, we identified 10 hub genes (EGFR, VEGFA, IGF1, PIK3R1, CD44, ITGB4, ANXA1, BCL2, LPAR3, LPAR1). The most significant KEGG Pathway was PI3K-Akt signaling pathway, involved in cell proliferation and survival. Moreover, we identified 30 common miRNAs between significant DEMs and the predicted hub gene regulators. Twelve of these miRNAs (miR-1, -365, -132, -195, -133a, -133b, -200c, -339, -222, -21, -221, -708) regulate two or more hub genes identified in our study. We suggested a signature including these 12 miRNAs for high-grade PCa detection. These miRNAs have been associated with aggressive PCa, poor survival and resistance to treatment in the last years.

摘要

GEO 数据库中可用的数据集数量不断增加,为鉴定与 PCa 相关的新 miRNA 提供了一种新方法。本研究的目的是利用生物信息学工具,提出一种 miRNA 特征用于检测高级别 PCa(Gleason 评分≥7)。选择了三个 mRNA 数据集(GSE26022、GSE30521、GSE46602)来鉴定高级别 PCa 中的差异表达基因(DEGs)。此外,分析了两个 miRNA 数据集(GSE45604、GSE46738)以选择差异表达的 miRNA(DEMs)。使用 DAVID 进行功能和途径富集分析,并通过 STRING 构建蛋白质-蛋白质相互作用网络(PPI)。此外,使用 microRNA.org 预测调节枢纽基因的 miRNAs。通过对 mRNA 数据集的分析,共鉴定出 973 个 DEGs,这些基因富集在 PCa 发展的关键机制中。此外,我们还鉴定出 10 个枢纽基因(EGFR、VEGFA、IGF1、PIK3R1、CD44、ITGB4、ANXA1、BCL2、LPAR3、LPAR1)。最显著的 KEGG 途径是 PI3K-Akt 信号通路,参与细胞增殖和存活。此外,我们在显著的 DEMs 和预测的枢纽基因调节剂之间鉴定出 30 个共同的 miRNAs。其中 12 个 miRNAs(miR-1、-365、-132、-195、-133a、-133b、-200c、-339、-222、-21、-221、-708)调节我们研究中鉴定出的两个或更多的枢纽基因。我们提出了一个包括这 12 个 miRNAs 的特征用于高级别 PCa 的检测。这些 miRNAs 近年来与侵袭性 PCa、不良生存和治疗抵抗有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验