Department of Computer Science, University of Verona, Strada le Grazie, 15, Italy, Verona, Italy.
Institute of Oncology Research (IOR), Via Vincenzo Vela 6, Bellinzona, Switzerland.
BMC Bioinformatics. 2018 Oct 15;19(Suppl 10):356. doi: 10.1186/s12859-018-2310-3.
R has become the de-facto reference analysis environment in Bioinformatics. Plenty of tools are available as packages that extend the R functionality, and many of them target the analysis of biological networks. Several algorithms for graphs, which are the most adopted mathematical representation of networks, are well-known examples of applications that require high-performance computing, and for which classic sequential implementations are becoming inappropriate. In this context, parallel approaches targeting GPU architectures are becoming pervasive to deal with the execution time constraints. Although R packages for parallel execution on GPUs are already available, none of them provides graph algorithms.
This work presents cuRnet, a R package that provides a parallel implementation for GPUs of the breath-first search (BFS), the single-source shortest paths (SSSP), and the strongly connected components (SCC) algorithms. The package allows offloading computing intensive applications to GPU devices for massively parallel computation and to speed up the runtime up to one order of magnitude with respect to the standard sequential computations on CPU. We have tested cuRnet on a benchmark of large protein interaction networks and for the interpretation of high-throughput omics data thought network analysis.
cuRnet is a R package to speed up graph traversal and analysis through parallel computation on GPUs. We show the efficiency of cuRnet applied both to biological network analysis, which requires basic graph algorithms, and to complex existing procedures built upon such algorithms.
R 已成为生物信息学中的事实上的参考分析环境。有许多工具作为扩展 R 功能的软件包提供,其中许多工具针对生物网络的分析。图形算法是网络的最常用数学表示形式之一,是需要高性能计算的应用程序的众所周知的示例,对于这些应用程序,经典的顺序实现变得不合适。在这种情况下,针对 GPU 架构的并行方法变得普遍,以满足执行时间约束。尽管已经有用于 GPU 上并行执行的 R 软件包,但它们都没有提供图形算法。
本工作介绍了 cuRnet,这是一个 R 软件包,为 GPU 提供了一种并行实现,用于执行广度优先搜索(BFS)、单源最短路径(SSSP)和强连通分量(SCC)算法。该软件包允许将计算密集型应用程序卸载到 GPU 设备上,以进行大规模并行计算,并将运行时间相对于 CPU 上的标准顺序计算提高一个数量级。我们已经在大型蛋白质相互作用网络的基准测试和通过网络分析对高通量组学数据的解释中测试了 cuRnet。
cuRnet 是一个用于通过 GPU 上的并行计算来加速图遍历和分析的 R 软件包。我们展示了 cuRnet 在应用于生物网络分析(需要基本图形算法)和基于此类算法的现有复杂现有过程方面的效率。