Department of Mechanical and Aerospace Engineering, Princeton University, D328 E-Quad, Olden St., Princeton, NJ, 08544, USA.
Department of Molecular Biology, Princeton University, 329 Lewis Thomas Laboratory, Princeton, NJ, 08544, USA.
Adv Mater. 2018 Nov;30(46):e1804153. doi: 10.1002/adma.201804153. Epub 2018 Oct 8.
Biofilms, surface-attached communities of bacterial cells, are a concern in health and in industrial operations because of persistent infections, clogging of flows, and surface fouling. Extracellular matrices provide mechanical protection to biofilm-dwelling cells as well as protection from chemical insults, including antibiotics. Understanding how biofilm material properties arise from constituent matrix components and how these properties change in different environments is crucial for designing biofilm removal strategies. Here, using rheological characterization and surface analyses of Vibrio cholerae biofilms, it is discovered how extracellular polysaccharides, proteins, and cells function together to define biofilm mechanical and interfacial properties. Using insight gained from our measurements, a facile capillary peeling technology is developed to remove biofilms from surfaces or to transfer intact biofilms from one surface to another. It is shown that the findings are applicable to other biofilm-forming bacterial species and to multiple surfaces. Thus, the technology and the understanding that have been developed could potentially be employed to characterize and/or treat biofilm-related infections and industrial biofouling problems.
生物膜是细菌细胞附着在表面形成的群落,由于持续存在的感染、流动堵塞和表面污垢等问题,生物膜在健康和工业领域都引起了人们的关注。细胞外基质为生物膜中的细胞提供了机械保护和化学物质的保护,包括抗生素。了解生物膜材料特性如何从组成基质成分中产生,以及这些特性如何在不同环境中变化,对于设计生物膜去除策略至关重要。在这里,通过对霍乱弧菌生物膜的流变特性和表面分析的研究,揭示了细胞外多糖、蛋白质和细胞如何协同作用,从而定义了生物膜的机械和界面特性。利用我们的测量结果获得的见解,开发了一种简单的毛细管剥离技术,可以从表面去除生物膜,或将完整的生物膜从一个表面转移到另一个表面。结果表明,该技术和相关的认识适用于其他形成生物膜的细菌物种和多种表面。因此,这项技术和相关的理解有可能被用于生物膜相关感染和工业生物污垢问题的特性描述和/或治疗。