Suppr超能文献

单细胞实时成像揭示霍乱弧菌生物膜生长程序与结构

Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

作者信息

Yan Jing, Sharo Andrew G, Stone Howard A, Wingreen Ned S, Bassler Bonnie L

机构信息

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544; Department of Molecular Biology, Princeton University, Princeton, NJ 08544;

Department of Physics, Princeton University, Princeton, NJ 08544;

出版信息

Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):E5337-43. doi: 10.1073/pnas.1611494113. Epub 2016 Aug 23.

Abstract

Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli.

摘要

生物膜是与表面相关的细菌群落,在自然界和感染过程中至关重要。尽管人们为识别生物膜成分以及发现其调控方式进行了大量研究,但对于单个细胞水平的生物膜结构仍知之甚少。在此,我们使用最先进的显微镜技术,对霍乱弧菌生物膜从单个起始细胞发展为包含10000个细胞的成熟生物膜的过程进行实时单细胞分辨率成像,并发现支撑其结构演变的作用力。诱变、基质标记和模拟表明,表面粘附介导的压缩作用使霍乱弧菌生物膜从二维分支形态转变为致密、有序的三维聚集体。我们发现杆状细菌的定向增殖在塑造霍乱弧菌生物膜的结构中起主导作用,且这种生长模式由单个基因rbmA控制。竞争分析表明,密集生长模式具有为生物膜提供卓越机械性能的优势。我们的单细胞技术能够广泛地将基因与生物膜精细结构联系起来,并为评估细胞对外部刺激的细胞间异质性提供了一条途径。

相似文献

1
Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.
Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):E5337-43. doi: 10.1073/pnas.1611494113. Epub 2016 Aug 23.
2
Architectural transitions in Vibrio cholerae biofilms at single-cell resolution.
Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E2066-72. doi: 10.1073/pnas.1601702113. Epub 2016 Mar 1.
3
filamentation promotes chitin surface attachment at the expense of competition in biofilms.
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14216-14221. doi: 10.1073/pnas.1819016116. Epub 2019 Jun 25.
4
The 1.9 Å crystal structure of the extracellular matrix protein Bap1 from provides insights into bacterial biofilm adhesion.
J Biol Chem. 2019 Oct 4;294(40):14499-14511. doi: 10.1074/jbc.RA119.008335. Epub 2019 Aug 22.
5
In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment.
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10491-6. doi: 10.1073/pnas.1512424112. Epub 2015 Aug 3.
6
Outer membrane vesicles and the outer membrane protein OmpU govern biofilm matrix assembly.
mBio. 2024 Feb 14;15(2):e0330423. doi: 10.1128/mbio.03304-23. Epub 2024 Jan 11.
7
Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization.
J Bacteriol. 2007 Jul;189(14):5348-60. doi: 10.1128/JB.01867-06. Epub 2007 May 11.
10
vpsA- and luxO-independent biofilms of Vibrio cholerae.
FEMS Microbiol Lett. 2007 Oct;275(2):199-206. doi: 10.1111/j.1574-6968.2007.00884.x. Epub 2007 Aug 14.

引用本文的文献

1
Metabolically driven flows enable exponential growth in macroscopic multicellular yeast.
Sci Adv. 2025 Jun 20;11(25):eadr6399. doi: 10.1126/sciadv.adr6399.
2
Dissecting the physics of bacterial biofilms with agent-based simulations.
Curr Opin Solid State Mater Sci. 2025 Jul;37. doi: 10.1016/j.cossms.2025.101228. Epub 2025 May 31.
5
A Microfluidic Approach for Quantitative Study of Spatial Heterogeneity in Bacterial Biofilms.
Small Sci. 2022 Sep 20;2(10):2200047. doi: 10.1002/smsc.202200047. eCollection 2022 Oct.
6
Segmentation of dense and multi-species bacterial colonies using models trained on synthetic microscopy images.
PLoS Comput Biol. 2025 Apr 4;21(4):e1012874. doi: 10.1371/journal.pcbi.1012874. eCollection 2025 Apr.
9
Matrix-producing cells' orientation order facilitates Bacillus subtilis biofilm self-healing.
Arch Microbiol. 2024 Dec 30;207(1):19. doi: 10.1007/s00203-024-04224-9.
10
Real-time high-resolution microscopy reveals how single-cell lysis shapes biofilm matrix morphogenesis.
bioRxiv. 2024 Oct 14:2024.10.13.618105. doi: 10.1101/2024.10.13.618105.

本文引用的文献

1
Architectural transitions in Vibrio cholerae biofilms at single-cell resolution.
Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E2066-72. doi: 10.1073/pnas.1601702113. Epub 2016 Mar 1.
2
The membrane-biofilm reactor (MBfR) as a counter-diffusional biofilm process.
Curr Opin Biotechnol. 2016 Apr;38:131-6. doi: 10.1016/j.copbio.2016.01.015. Epub 2016 Feb 12.
3
Cell shape dynamics during the staphylococcal cell cycle.
Nat Commun. 2015 Aug 17;6:8055. doi: 10.1038/ncomms9055.
4
In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment.
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10491-6. doi: 10.1073/pnas.1512424112. Epub 2015 Aug 3.
5
Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes.
FEMS Microbiol Rev. 2015 Sep;39(5):649-69. doi: 10.1093/femsre/fuv015. Epub 2015 Apr 22.
6
Living in the matrix: assembly and control of Vibrio cholerae biofilms.
Nat Rev Microbiol. 2015 May;13(5):255-68. doi: 10.1038/nrmicro3433.
7
Extracellular matrix structure governs invasion resistance in bacterial biofilms.
ISME J. 2015 Aug;9(8):1700-9. doi: 10.1038/ismej.2014.246. Epub 2015 Jan 20.
8
Adhesion as a weapon in microbial competition.
ISME J. 2015 Jan;9(1):139-49. doi: 10.1038/ismej.2014.174. Epub 2014 Oct 7.
9
The role of mechanical forces in the planar-to-bulk transition in growing Escherichia coli microcolonies.
J R Soc Interface. 2014 Aug 6;11(97):20140400. doi: 10.1098/rsif.2014.0400.
10
Structural insights into RbmA, a biofilm scaffolding protein of V. cholerae.
PLoS One. 2013 Dec 5;8(12):e82458. doi: 10.1371/journal.pone.0082458. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验