Suppr超能文献

在实验室条件下借助显微拉曼光谱法检测亚种。

Detection of subsp. Assisted by Micro-Raman Spectroscopy under Laboratory Conditions.

作者信息

Pérez Moisés Roberto Vallejo, Contreras Hugo Ricardo Navarro, Sosa Herrera Jesús A, Ávila José Pablo Lara, Tobías Hugo Magdaleno Ramírez, Martínez Fernando Díaz-Barriga, Ramírez Rogelio Flores, Vázquez Ángel Gabriel Rodríguez

机构信息

CONACyT-Universidad Autónoma de San Luis Potosí. Álvaro Obregón #64, Col. Centro, C.P. 78000, San Luis Potosí, S.L.P. México.

Universidad Autónoma de San Luis Potosí. Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACyT). Av. Sierra Leona #550, Col. Lomas 2a. Sección, C.P. 78210, S.L.P., México.

出版信息

Plant Pathol J. 2018 Oct;34(5):381-392. doi: 10.5423/PPJ.OA.02.2018.0019. Epub 2018 Oct 1.

Abstract

subsp. () is a quarantine-worthy pest in México. The implementation and validation of new technologies is necessary to reduce the time for bacterial detection in laboratory conditions and Raman spectroscopy is an ambitious technology that has all of the features needed to characterize and identify bacteria. Under controlled conditions a contagion process was induced with , the disease epidemiology was monitored. Micro-Raman spectroscopy (532 nm λ laser) technique was evaluated its performance at assisting on detection through its characteristic Raman spectrum fingerprint. Our experiment was conducted with tomato plants in a completely randomized block experimental design (13 plants × 4 rows). The infection was confirmed by 16S rDNA and plants showed symptoms from 48 to 72 h after inoculation, the evolution of the incidence and severity on plant population varied over time and it kept an aggregated spatial pattern. The contagion process reached 79% just 24 days after the epidemic was induced. Micro-Raman spectroscopy proved its speed, efficiency and usefulness as a non-destructive method for the preliminary detection of . Carotenoid specific bands with wavelengths at 1146 and 1510 cm were the distinguishable markers. Chemometric analyses showed the best performance by the implementation of PCA-LDA supervised classification algorithms applied over Raman spectrum data with 100% of performance in metrics of classifiers (sensitivity, specificity, accuracy, negative and positive predictive value) that allowed us to differentiate from other endophytic bacteria ( and ). The unsupervised KMeans algorithm showed good performance (100, 96, 98, 91 y 100%, respectively).

摘要

亚种()在墨西哥是一种值得检疫关注的害虫。实施和验证新技术对于减少实验室条件下细菌检测的时间是必要的,而拉曼光谱学是一项有抱负的技术,具备表征和鉴定细菌所需的所有特征。在受控条件下,用诱导了传染过程,并监测了疾病流行病学。评估了显微拉曼光谱(532 nm波长激光)技术通过其特征拉曼光谱指纹在辅助检测方面的性能。我们的实验是在完全随机区组实验设计(13株植物×4行)下用番茄植株进行的。通过16S rDNA确认了感染,接种后48至72小时植株出现症状,植株群体发病率和严重程度的演变随时间变化,且保持聚集的空间格局。疫情引发后仅24天,传染过程就达到了79%。显微拉曼光谱证明了其作为一种用于初步检测的非破坏性方法的速度、效率和实用性。波长为1146和1510 cm的类胡萝卜素特定谱带是可区分的标记物。化学计量学分析表明,通过对拉曼光谱数据应用PCA-LDA监督分类算法表现出最佳性能,在分类器指标(敏感性、特异性、准确性、阴性和阳性预测值)方面的性能达到100%,这使我们能够将与其他内生细菌(和)区分开来。无监督KMeans算法表现良好(分别为100%、96%、98%、91%和100%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f0f/6200046/e6911ed7e511/ppj-34-381f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验