Bressan Marco, Rosseel Yves, Lombardi Luigi
Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
Department of Data Analysis, Ghent University, Ghent, Belgium.
Front Psychol. 2018 Oct 12;9:1876. doi: 10.3389/fpsyg.2018.01876. eCollection 2018.
Correlational measures are probably the most spread statistical tools in psychological research. They are used by researchers to investigate, for example, relations between self-report measures usually collected using paper-pencil or online questionnaires. Like many other statistical analysis, also correlational measures can be seriously affected by specific sources of bias which constitute serious threats to the final observed results. In this contribution, we will focus on the impact of the fake data threat on the interpretation of statistical results for two well-know correlational measures (the Pearson product-moment correlation and the Spearman rank-order correlation). By using the Sample Generation by Replacement (SGR) approach, we analyze uncertainty in inferences based on possible fake data and evaluate the implications of fake data for correlational results. A population-level analysis and a Monte Carlo simulation are performed to study different modulations of faking on bivariate discrete variables with finite supports and varying sample sizes. We show that by using our paradigm it is always possible, under specific faking conditions, to increase (resp. decrease) the original correlation between two discrete variables in a predictable and systematic manner.
相关测量可能是心理学研究中使用最广泛的统计工具。例如,研究人员使用它们来调查通常通过纸笔或在线问卷收集的自我报告测量之间的关系。与许多其他统计分析一样,相关测量也可能受到特定偏差来源的严重影响,这些偏差对最终观察结果构成严重威胁。在本论文中,我们将重点关注虚假数据威胁对两种著名相关测量(皮尔逊积矩相关和斯皮尔曼等级相关)统计结果解释的影响。通过使用重复抽样生成样本(SGR)方法,我们基于可能的虚假数据分析推理中的不确定性,并评估虚假数据对相关结果的影响。进行了总体水平分析和蒙特卡罗模拟,以研究在有限支持和不同样本量的双变量离散变量上造假的不同调制情况。我们表明,通过使用我们的范式,在特定的造假条件下,总是有可能以可预测和系统的方式增加(或减少)两个离散变量之间的原始相关性。