Suppr超能文献

癌症中的非编码基因变异

Non-coding genetic variation in cancer.

作者信息

Cuykendall Tawny N, Rubin Mark A, Khurana Ekta

机构信息

Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, 10065, USA.

Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, 10021, USA.

出版信息

Curr Opin Syst Biol. 2017 Feb;1:9-15. doi: 10.1016/j.coisb.2016.12.017. Epub 2017 Mar 4.

Abstract

The vast majority of somatic variants in cancer genomes occur in non-coding regions. However, progress in cancer genomics in the past decade has been mostly focused on coding regions, largely due to the prohibitive cost of whole genome sequencing (WGS). Recent technological advances have decreased sequencing costs leading to the current acquisition of thousands of tumor whole genome sequences which has led to a hunt for non-coding drivers. The most well characterized regulatory drivers are in the promoter and have been identified in many cancer types. Despite the larger fraction of somatic variants occurring in non-coding regions, the number of non-coding drivers identified so far is much less than the number of coding region drivers. Here we discuss reasons that may hinder the detection of non-coding drivers. We also examine the relationship between non-coding genetic variation and epigenetic state in tumor cells and assert the need for additional epigenetic data sets as a prerequisite for understanding the rewiring of regulatory networks in cancer.

摘要

癌症基因组中的绝大多数体细胞变异发生在非编码区域。然而,过去十年癌症基因组学的进展主要集中在编码区域,这在很大程度上是由于全基因组测序(WGS)成本过高。最近的技术进步降低了测序成本,使得目前能够获得数千个肿瘤全基因组序列,从而引发了对非编码驱动因素的探索。特征最明确的调控驱动因素位于启动子区域,并且已在多种癌症类型中得到鉴定。尽管体细胞变异在非编码区域中占比较大,但到目前为止,已鉴定出的非编码驱动因素的数量远少于编码区域驱动因素的数量。在此,我们讨论可能阻碍非编码驱动因素检测的原因。我们还研究了肿瘤细胞中非编码遗传变异与表观遗传状态之间的关系,并断言需要额外的表观遗传数据集作为理解癌症中调控网络重新布线的先决条件。

相似文献

1
Non-coding genetic variation in cancer.
Curr Opin Syst Biol. 2017 Feb;1:9-15. doi: 10.1016/j.coisb.2016.12.017. Epub 2017 Mar 4.
2
Mining the coding and non-coding genome for cancer drivers.
Cancer Lett. 2015 Dec 28;369(2):307-15. doi: 10.1016/j.canlet.2015.09.015. Epub 2015 Oct 1.
3
Identification of coding and non-coding mutational hotspots in cancer genomes.
BMC Genomics. 2017 Jan 5;18(1):17. doi: 10.1186/s12864-016-3420-9.
4
Cancer whole-genome sequencing: present and future.
Oncogene. 2015 Dec 3;34(49):5943-50. doi: 10.1038/onc.2015.90. Epub 2015 Mar 30.
5
Melanoma-specific mutation hotspots in distal, non-coding, promoter-interacting regions implicate novel candidate driver genes.
Br J Cancer. 2024 Nov;131(10):1644-1655. doi: 10.1038/s41416-024-02870-w. Epub 2024 Oct 4.
6
Identification of Single Nucleotide Non-coding Driver Mutations in Cancer.
Front Genet. 2018 Feb 2;9:16. doi: 10.3389/fgene.2018.00016. eCollection 2018.
7
regulatory mutations with driver hallmarks in major cancers.
iScience. 2021 Feb 4;24(3):102144. doi: 10.1016/j.isci.2021.102144. eCollection 2021 Mar 19.
8
Beyond the exome: the role of non-coding somatic mutations in cancer.
Ann Oncol. 2016 Feb;27(2):240-8. doi: 10.1093/annonc/mdv561. Epub 2015 Nov 23.
9
Disease-associated variants in different categories of disease located in distinct regulatory elements.
BMC Genomics. 2015;16 Suppl 8(Suppl 8):S3. doi: 10.1186/1471-2164-16-S8-S3. Epub 2015 Jun 18.
10
Integrative identification of non-coding regulatory regions driving metastatic prostate cancer.
bioRxiv. 2023 Jun 2:2023.04.14.535921. doi: 10.1101/2023.04.14.535921.

引用本文的文献

1
Analysis of Genotype and Expression of FTO and ALKBH5 in a MENA-Region Renal Cell Carcinoma Cohort.
Cancers (Basel). 2025 Apr 22;17(9):1395. doi: 10.3390/cancers17091395.
2
New sights on long non-coding RNAs in glioblastoma: A review of molecular mechanism.
Heliyon. 2024 Oct 23;10(21):e39744. doi: 10.1016/j.heliyon.2024.e39744. eCollection 2024 Nov 15.
3
Chromatin interaction maps identify oncogenic targets of enhancer duplications in cancer.
Genome Res. 2024 Oct 29;34(10):1514-1527. doi: 10.1101/gr.278418.123.
4
Loss Enhances Disease Progression in a Murine Model of Osteosarcoma.
Cancers (Basel). 2024 Jul 31;16(15):2725. doi: 10.3390/cancers16152725.
5
Targeted mutagenesis of specific genomic DNA sequences in animals for the generation of variant libraries.
bioRxiv. 2024 Dec 21:2024.06.10.598328. doi: 10.1101/2024.06.10.598328.
6
Unraveling noncoding DNA variants and epimutations: a paradigm shift in hereditary cancer research.
Future Oncol. 2024;20(18):1289-1298. doi: 10.2217/fon-2023-0665. Epub 2024 May 9.
7
Detecting and understanding meaningful cancerous mutations based on computational models of mRNA splicing.
NPJ Syst Biol Appl. 2024 Mar 7;10(1):25. doi: 10.1038/s41540-024-00351-7.
8
The pivotal role of long non-coding RNAs as potential biomarkers and modulators of chemoresistance in ovarian cancer (OC).
Hum Genet. 2024 Feb;143(2):107-124. doi: 10.1007/s00439-023-02635-0. Epub 2024 Jan 26.
9
An emerging link between lncRNAs and cancer sex dimorphism.
Hum Genet. 2024 Jul;143(7):831-842. doi: 10.1007/s00439-023-02620-7. Epub 2023 Dec 14.
10
Recapitulation of patient-specific 3D chromatin conformation using machine learning.
Cell Rep Methods. 2023 Sep 25;3(9):100578. doi: 10.1016/j.crmeth.2023.100578. Epub 2023 Sep 5.

本文引用的文献

1
2
Mutational Biases Drive Elevated Rates of Substitution at Regulatory Sites across Cancer Types.
PLoS Genet. 2016 Aug 4;12(8):e1006207. doi: 10.1371/journal.pgen.1006207. eCollection 2016 Aug.
3
A synergistic DNA logic predicts genome-wide chromatin accessibility.
Genome Res. 2016 Oct;26(10):1430-1440. doi: 10.1101/gr.199778.115. Epub 2016 Jul 25.
6
Landscape of somatic mutations in 560 breast cancer whole-genome sequences.
Nature. 2016 Jun 2;534(7605):47-54. doi: 10.1038/nature17676. Epub 2016 May 2.
7
Nucleotide excision repair is impaired by binding of transcription factors to DNA.
Nature. 2016 Apr 14;532(7598):264-7. doi: 10.1038/nature17661.
8
Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes.
Nature. 2016 Apr 14;532(7598):259-63. doi: 10.1038/nature17437.
9
Cancer genomics: Hard-to-reach repairs.
Nature. 2016 Apr 14;532(7598):181-2. doi: 10.1038/532181a.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验