Suppr超能文献

一种协同DNA逻辑预测全基因组染色质可及性。

A synergistic DNA logic predicts genome-wide chromatin accessibility.

作者信息

Hashimoto Tatsunori, Sherwood Richard I, Kang Daniel D, Rajagopal Nisha, Barkal Amira A, Zeng Haoyang, Emons Bart J M, Srinivasan Sharanya, Jaakkola Tommi, Gifford David K

机构信息

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.

Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Genome Res. 2016 Oct;26(10):1430-1440. doi: 10.1101/gr.199778.115. Epub 2016 Jul 25.

Abstract

Enhancers and promoters commonly occur in accessible chromatin characterized by depleted nucleosome contact; however, it is unclear how chromatin accessibility is governed. We show that log-additive cis-acting DNA sequence features can predict chromatin accessibility at high spatial resolution. We develop a new type of high-dimensional machine learning model, the Synergistic Chromatin Model (SCM), which when trained with DNase-seq data for a cell type is capable of predicting expected read counts of genome-wide chromatin accessibility at every base from DNA sequence alone, with the highest accuracy at hypersensitive sites shared across cell types. We confirm that a SCM accurately predicts chromatin accessibility for thousands of synthetic DNA sequences using a novel CRISPR-based method of highly efficient site-specific DNA library integration. SCMs are directly interpretable and reveal that a logic based on local, nonspecific synergistic effects, largely among pioneer TFs, is sufficient to predict a large fraction of cellular chromatin accessibility in a wide variety of cell types.

摘要

增强子和启动子通常出现在以核小体接触减少为特征的可及染色质中;然而,目前尚不清楚染色质可及性是如何调控的。我们发现对数加性顺式作用DNA序列特征能够在高空间分辨率下预测染色质可及性。我们开发了一种新型的高维机器学习模型,即协同染色质模型(SCM),当使用某一细胞类型的DNase-seq数据进行训练时,该模型能够仅根据DNA序列预测全基因组中每个碱基处染色质可及性的预期读数计数,在不同细胞类型共有的超敏位点处预测准确率最高。我们使用基于CRISPR的高效位点特异性DNA文库整合新方法,证实SCM能够准确预测数千个合成DNA序列的染色质可及性。SCM具有直接可解释性,并揭示了一种基于局部、非特异性协同效应(主要存在于先锋转录因子之间)的逻辑,足以预测多种细胞类型中大部分细胞染色质的可及性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f8c/5052050/e2e8fb311f66/1430f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验