Suppr超能文献

[使用健康信息系统识别慢性病患者算法的验证]

[Validation of algorithms for the identification of subjects with chronic disease using health information systems].

作者信息

Di Domenicantonio Riccardo, Cappai Giovanna, Cascini Silvia, Narduzzi Silvia, Porta Daniela, Bauleo Lisa, Lallo Adele, Renzi Matteo, Cesaroni Giulia, Agabiti Nera, Forastiere Francesco, Pistelli Riccardo, Davoli Marina

机构信息

Dipartimento di epidemiologia, Servizio sanitario regionale del Lazio, ASL Roma1, Roma.

Dipartimento di epidemiologia, Servizio sanitario regionale del Lazio, ASL Roma1, Roma;

出版信息

Epidemiol Prev. 2018 Sep-Dec;42(5-6):316-325. doi: 10.19191/EP18.5-6.P316.100.

Abstract

OBJECTIVES

to test the validity of algorithms to identify diabetes, chronic obstructive pulmonary disease (COPD), hypertension, and hypothyroidism from routinely collected health data using information from self-reported diagnosis and laboratory or functional test.

SETTING AND PARTICIPANTS

clinical or self-reported diagnosis from three surveys conducted in Lazio Region (Central Italy) between year 2010 and 2014 were assumed as gold standard and compared to the results of the algorithms application to administrative data.

MAIN OUTCOME MEASURES

prevalence resulted from administrative data and from information available in the surveys were compared. Sensitivity, specificity, positive predictive value, and positive likelihood ratio of algorithms with respect to self-reported diagnosis, laboratory or functional test, assumed as gold standards, were calculated.

RESULTS

we analyzed data of 7,318 subjects (1,545 for diabetes, 1,783 for COPD, 2,448 for hypertension, and 1,542 for hypothyroidism). For hypertension and hypothyroidism, we observed a higher prevalence from laboratory or functional test compared to self-reported diagnosis (54.5% vs. 44.9% and 7.5% vs. 1.5%). Sensitivity of administrative data with respect to self-reported diagnosis resulted 90.9%, 38.5%, 88.3%, and 47.8%, respectively, for diabetes, COPD, hypertension, and hypothyroidism. Respectively, specificity was 97.4%, 91.7%, 84.8% and 91.8%; positive predictive value was 70,9%, 38.1%, 82.6% and 8.1%. All values of positive likelihood ratio resulted moderate (about 5), with exception of the diabetes algorithm and the disease-specific payment exemptions register for hypertension (respectively 35.5 and 17.4).

CONCLUSION

hypertension and hypothyroidism resulted markedly underdiagnosed from self-reported data. Case identification algorithms are highly specific, allowing their utilization for selection of cohort of subject affected by chronic diseases. The sub-optimal sensitivity observed for COPD and hypothyroidism could limit the utilization of the algorithms for prevalence estimation.

摘要

目的

利用自我报告诊断以及实验室或功能检查信息,检验从常规收集的健康数据中识别糖尿病、慢性阻塞性肺疾病(COPD)、高血压和甲状腺功能减退症的算法的有效性。

设置与参与者

将2010年至2014年在意大利中部拉齐奥地区进行的三项调查中的临床诊断或自我报告诊断作为金标准,并与将算法应用于行政数据的结果进行比较。

主要观察指标

比较行政数据得出的患病率与调查中可得信息得出的患病率。计算算法相对于自我报告诊断、实验室或功能检查(假定为金标准)的敏感性、特异性、阳性预测值和阳性似然比。

结果

我们分析了7318名受试者的数据(糖尿病患者1545名,COPD患者1783名,高血压患者2448名,甲状腺功能减退症患者1542名)。对于高血压和甲状腺功能减退症,我们观察到实验室或功能检查得出的患病率高于自我报告诊断得出的患病率(分别为54.5%对44.9%以及7.5%对1.5%)。行政数据相对于自我报告诊断的敏感性,糖尿病、COPD、高血压和甲状腺功能减退症分别为90.9%、38.5%、88.3%和47.8%。特异性分别为97.4%、91.7%、84.8%和91.8%;阳性预测值分别为70.9%、38.1%、82.6%和8.1%。除糖尿病算法以及高血压的疾病特异性支付豁免登记外,所有阳性似然比的值均为中等(约为5)(分别为35.5和17.4)。

结论

自我报告数据显示高血压和甲状腺功能减退症明显诊断不足。病例识别算法具有高度特异性,可用于选择受慢性病影响的受试者队列。观察到的COPD和甲状腺功能减退症的次优敏感性可能会限制该算法在患病率估计中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验