Department of Information Engineering, University of Padova, Padova, Italy.
Arsenàl.IT, Veneto's Research Centre for eHealth Innovation, Treviso, Italy.
Nutr Metab Cardiovasc Dis. 2020 Jan 3;30(1):84-91. doi: 10.1016/j.numecd.2019.08.017. Epub 2019 Sep 9.
Diabetes can often remain undiagnosed or unregistered in administrative databases long after its onset, even when laboratory test results meet diagnostic criteria. In the present work, we analyse healthcare data of the Veneto Region, North East Italy, with the aims of: (i) developing an algorithm for the identification of diabetes from administrative claims (4,236,007 citizens), (ii) assessing its reliability by comparing its performance with the gold standard clinical diagnosis from a clinical database (7525 patients), (iii) combining the algorithm and the laboratory data of the regional Health Information Exchange (rHIE) system (543,520 subjects) to identify undiagnosed diabetes, and (iv) providing a credible estimate of the true prevalence of diabetes in Veneto.
The proposed algorithm for the identification of diabetes was fed by administrative data related to drug dispensations, outpatient visits, and hospitalisations. Evaluated against a clinical database, the algorithm achieved 95.7% sensitivity, 87.9% specificity, and 97.6% precision. To identify possible cases of undiagnosed diabetes, we applied standard diagnostic criteria to the laboratory test results of the subjects who, according to the algorithm, had no diabetes-related claims. Using a simplified probabilistic model, we corrected our claims-based estimate of known diabetes (6.17% prevalence; 261,303 cases) to account for undiagnosed cases, yielding an estimated total prevalence of 7.50%.
We herein validated an algorithm for the diagnosis of diabetes using administrative claims against the clinical diagnosis. Together with rHIE laboratory data, this allowed to identify possibly undiagnosed diabetes and estimate the true prevalence of diabetes in Veneto.
糖尿病在发病后很长时间内,即使实验室检查结果符合诊断标准,也常常在行政数据库中未被诊断或未被登记。在本研究中,我们分析了意大利东北部威尼托地区的医疗保健数据,旨在:(i) 从行政索赔中(4,236,007 名公民)开发一种用于识别糖尿病的算法;(ii) 通过与临床数据库(7525 名患者)中的金标准临床诊断比较来评估其可靠性;(iii) 将算法与区域健康信息交换(rHIE)系统的实验室数据相结合,以识别未确诊的糖尿病;(iv) 提供威尼托地区糖尿病真实患病率的可信估计。
用于识别糖尿病的算法由与药物配给、门诊就诊和住院相关的行政数据提供。该算法与临床数据库评估的结果为,敏感性为 95.7%,特异性为 87.9%,准确性为 97.6%。为了识别可能的未确诊糖尿病病例,我们将标准诊断标准应用于根据算法没有糖尿病相关索赔的受试者的实验室检查结果。使用简化的概率模型,我们校正了基于索赔的已知糖尿病(6.17%的患病率;261,303 例)估计值,以考虑未确诊病例,估计总患病率为 7.50%。
我们使用行政索赔对临床诊断验证了一种用于诊断糖尿病的算法。与 rHIE 实验室数据结合使用,可以识别可能未被诊断的糖尿病,并估计威尼托地区糖尿病的真实患病率。