da Silva Elaine Fernanda, Bassi Mirian, Menani José Vanderlei, Colombari Débora Simões Almeida, Zoccal Daniel Breseghello, Pedrino Gustavo Rodrigues, Colombari Eduardo
Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil.
Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiânia, Goias, Brazil.
Exp Physiol. 2019 Jan;104(1):15-27. doi: 10.1113/EP087110. Epub 2018 Nov 10.
What is the central question of this study? Does carotid body input contribute to the hyperosmotic responses? What is the main finding and its importance? The response to NaCl overload is sympathorespiratory excitation. Eliminating the carotid body input reduced sympathoexcitation but did not affect the increase in phrenic burst frequency, whereas eliminating the hypothalamus prevented the tachypnoea and sympathoexcitation. We conclude that the carotid body inputs are essential for the full expression of the sympathetic activity during acute NaCl overload, whereas the tachypnoea depends on hypothalamic mechanisms.
Acute salt excess activates central osmoreceptors, which trigger an increase in sympathetic and respiratory activity. The carotid bodies also respond to hyperosmolality of the extracellular compartment, but their contribution to the sympathoexcitatory and ventilatory responses to NaCl overload remains unknown. To evaluate their contribution to acute NaCl overload, we recorded thoracic sympathetic (tSNA), phrenic (PNA) and carotid sinus nerve activities in decorticate in situ preparations of male Holtzman rats (60-100 g) while delivering intra-arterial infusions of hyperosmotic NaCl (0.17, 0.3, 0.7, 1.5 and 2.0 mol l ; 200 μl infusion over 25-30 s, with a 10 min time interval between solutions) or mannitol (0.3, 0.5, 1.0, 2.7 and 3.8 mol l ) progressively. The cumulative infusions of hyperosmotic NaCl increased the perfusate osmolality to 341 ± 5 mosmol (kg water) and elicited an immediate increase in PNA and tSNA (n = 6, P < 0.05) in sham-denervated rats. Carotid body removal attenuated sympathoexcitation (n = 5, P < 0.05) but did not affect the tachypnoeic response. A precollicular transection disconnecting the hypothalamus abolished the sympathoexcitatory and tachypnoeic responses to NaCl overload (n = 6, P < 0.05). Equi-osmolar infusions of mannitol did not alter the PNA and tSNA in sham-denervated rats (n = 5). Sodium chloride infusions increased carotid sinus nerve activity (n = 10, P < 0.05), whereas mannitol produced negligible changes (n = 5). The results indicate that carotid bodies are activated by acute NaCl overload, but not by mannitol. We conclude that the carotid bodies contribute to the increased sympathetic activity during acute NaCl overload, whereas the ventilatory response is mainly mediated by hypothalamic mechanisms.
本研究的核心问题是什么?颈动脉体输入是否促成了高渗反应?主要发现及其重要性是什么?对氯化钠过载的反应是交感呼吸兴奋。消除颈动脉体输入可减少交感兴奋,但不影响膈神经爆发频率的增加,而消除下丘脑则可防止呼吸急促和交感兴奋。我们得出结论,在急性氯化钠过载期间,颈动脉体输入对于交感神经活动的充分表达至关重要,而呼吸急促则取决于下丘脑机制。
急性盐过量激活中枢渗透压感受器,引发交感神经和呼吸活动增加。颈动脉体也对细胞外液高渗作出反应,但其对氯化钠过载的交感兴奋和通气反应的贡献尚不清楚。为评估其对急性氯化钠过载的贡献,我们在雄性霍尔兹曼大鼠(60 - 100克)的去皮质原位制备中记录胸段交感神经(tSNA)、膈神经(PNA)和颈动脉窦神经活动,同时逐步动脉内输注高渗氯化钠(0.17、0.3、0.7、1.5和2.0摩尔/升;25 - 30秒内输注200微升,溶液之间间隔10分钟)或甘露醇(0.3、0.5、1.0、2.7和3.8摩尔/升)。高渗氯化钠的累积输注使灌注液渗透压增加至341±5毫摩尔/(千克水),并在假去神经大鼠中引起PNA和tSNA立即增加(n = 6,P < 0.05)。切除颈动脉体减弱了交感兴奋(n = 5,P < 0.05),但不影响呼吸急促反应。切断下丘脑的视交叉前横断消除了对氯化钠过载的交感兴奋和呼吸急促反应(n = 6,P < 0.05)。等渗甘露醇输注未改变假去神经大鼠的PNA和tSNA(n = 5)。氯化钠输注增加了颈动脉窦神经活动(n = 10,P < 0.05),而甘露醇产生的变化可忽略不计(n = 5)。结果表明,急性氯化钠过载激活颈动脉体,但甘露醇不会。我们得出结论,颈动脉体促成急性氯化钠过载期间交感神经活动增加,而通气反应主要由下丘脑机制介导。