Suppr超能文献

颈动脉体参与急性盐负荷过重诱导的交感神经兴奋。

Carotid bodies contribute to sympathoexcitation induced by acute salt overload.

作者信息

da Silva Elaine Fernanda, Bassi Mirian, Menani José Vanderlei, Colombari Débora Simões Almeida, Zoccal Daniel Breseghello, Pedrino Gustavo Rodrigues, Colombari Eduardo

机构信息

Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil.

Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiânia, Goias, Brazil.

出版信息

Exp Physiol. 2019 Jan;104(1):15-27. doi: 10.1113/EP087110. Epub 2018 Nov 10.

Abstract

NEW FINDINGS

What is the central question of this study? Does carotid body input contribute to the hyperosmotic responses? What is the main finding and its importance? The response to NaCl overload is sympathorespiratory excitation. Eliminating the carotid body input reduced sympathoexcitation but did not affect the increase in phrenic burst frequency, whereas eliminating the hypothalamus prevented the tachypnoea and sympathoexcitation. We conclude that the carotid body inputs are essential for the full expression of the sympathetic activity during acute NaCl overload, whereas the tachypnoea depends on hypothalamic mechanisms.

ABSTRACT

Acute salt excess activates central osmoreceptors, which trigger an increase in sympathetic and respiratory activity. The carotid bodies also respond to hyperosmolality of the extracellular compartment, but their contribution to the sympathoexcitatory and ventilatory responses to NaCl overload remains unknown. To evaluate their contribution to acute NaCl overload, we recorded thoracic sympathetic (tSNA), phrenic (PNA) and carotid sinus nerve activities in decorticate in situ preparations of male Holtzman rats (60-100 g) while delivering intra-arterial infusions of hyperosmotic NaCl (0.17, 0.3, 0.7, 1.5 and 2.0 mol l ; 200 μl infusion over 25-30 s, with a 10 min time interval between solutions) or mannitol (0.3, 0.5, 1.0, 2.7 and 3.8 mol l ) progressively. The cumulative infusions of hyperosmotic NaCl increased the perfusate osmolality to 341 ± 5 mosmol (kg water) and elicited an immediate increase in PNA and tSNA (n = 6, P < 0.05) in sham-denervated rats. Carotid body removal attenuated sympathoexcitation (n = 5, P < 0.05) but did not affect the tachypnoeic response. A precollicular transection disconnecting the hypothalamus abolished the sympathoexcitatory and tachypnoeic responses to NaCl overload (n = 6, P < 0.05). Equi-osmolar infusions of mannitol did not alter the PNA and tSNA in sham-denervated rats (n = 5). Sodium chloride infusions increased carotid sinus nerve activity (n = 10, P < 0.05), whereas mannitol produced negligible changes (n = 5). The results indicate that carotid bodies are activated by acute NaCl overload, but not by mannitol. We conclude that the carotid bodies contribute to the increased sympathetic activity during acute NaCl overload, whereas the ventilatory response is mainly mediated by hypothalamic mechanisms.

摘要

新发现

本研究的核心问题是什么?颈动脉体输入是否促成了高渗反应?主要发现及其重要性是什么?对氯化钠过载的反应是交感呼吸兴奋。消除颈动脉体输入可减少交感兴奋,但不影响膈神经爆发频率的增加,而消除下丘脑则可防止呼吸急促和交感兴奋。我们得出结论,在急性氯化钠过载期间,颈动脉体输入对于交感神经活动的充分表达至关重要,而呼吸急促则取决于下丘脑机制。

摘要

急性盐过量激活中枢渗透压感受器,引发交感神经和呼吸活动增加。颈动脉体也对细胞外液高渗作出反应,但其对氯化钠过载的交感兴奋和通气反应的贡献尚不清楚。为评估其对急性氯化钠过载的贡献,我们在雄性霍尔兹曼大鼠(60 - 100克)的去皮质原位制备中记录胸段交感神经(tSNA)、膈神经(PNA)和颈动脉窦神经活动,同时逐步动脉内输注高渗氯化钠(0.17、0.3、0.7、1.5和2.0摩尔/升;25 - 30秒内输注200微升,溶液之间间隔10分钟)或甘露醇(0.3、0.5、1.0、2.7和3.8摩尔/升)。高渗氯化钠的累积输注使灌注液渗透压增加至341±5毫摩尔/(千克水),并在假去神经大鼠中引起PNA和tSNA立即增加(n = 6,P < 0.05)。切除颈动脉体减弱了交感兴奋(n = 5,P < 0.05),但不影响呼吸急促反应。切断下丘脑的视交叉前横断消除了对氯化钠过载的交感兴奋和呼吸急促反应(n = 6,P < 0.05)。等渗甘露醇输注未改变假去神经大鼠的PNA和tSNA(n = 5)。氯化钠输注增加了颈动脉窦神经活动(n = 10,P < 0.05),而甘露醇产生的变化可忽略不计(n = 5)。结果表明,急性氯化钠过载激活颈动脉体,但甘露醇不会。我们得出结论,颈动脉体促成急性氯化钠过载期间交感神经活动增加,而通气反应主要由下丘脑机制介导。

相似文献

1
Carotid bodies contribute to sympathoexcitation induced by acute salt overload.
Exp Physiol. 2019 Jan;104(1):15-27. doi: 10.1113/EP087110. Epub 2018 Nov 10.
2
A spinal vasopressinergic mechanism mediates hyperosmolality-induced sympathoexcitation.
J Physiol. 2006 Oct 15;576(Pt 2):569-83. doi: 10.1113/jphysiol.2006.115766. Epub 2006 Jul 27.
4
AT(1)-receptor blockade in the hypothalamic PVN reduces central hyperosmolality-induced renal sympathoexcitation.
Am J Physiol Regul Integr Comp Physiol. 2001 Dec;281(6):R1844-53. doi: 10.1152/ajpregu.2001.281.6.R1844.
5
6
Organum vasculosum laminae terminalis contributes to increased sympathetic nerve activity induced by central hyperosmolality.
Am J Physiol Regul Integr Comp Physiol. 2007 Dec;293(6):R2279-89. doi: 10.1152/ajpregu.00160.2007. Epub 2007 Sep 26.
7
Organum Vasculosum of the Lamina Terminalis Detects NaCl to Elevate Sympathetic Nerve Activity and Blood Pressure.
Hypertension. 2017 Jan;69(1):163-170. doi: 10.1161/HYPERTENSIONAHA.116.08372. Epub 2016 Nov 28.
8
Cooperative role of ETA and ETB receptors in mediating the diuretic response to intramedullary hyperosmotic NaCl infusion.
Am J Physiol Renal Physiol. 2010 Dec;299(6):F1424-32. doi: 10.1152/ajprenal.00015.2010. Epub 2010 Sep 15.
9
Purinergic P2 receptors in the paraventricular nucleus of the hypothalamus are involved in hyperosmotic-induced sympathoexcitation.
Neuroscience. 2017 May 4;349:253-263. doi: 10.1016/j.neuroscience.2017.02.054. Epub 2017 Mar 6.
10
Intracarotid hypertonic sodium chloride differentially modulates sympathetic nerve activity to the heart and kidney.
Am J Physiol Regul Integr Comp Physiol. 2014 Apr 15;306(8):R567-75. doi: 10.1152/ajpregu.00460.2013. Epub 2014 Feb 12.

引用本文的文献

1
Hypoxia sensing in the body: An update on the peripheral and central mechanisms.
Exp Physiol. 2024 Apr;109(4):461-469. doi: 10.1113/EP091206. Epub 2023 Nov 30.
3
The carotid body: A novel key player in neuroimmune interactions.
Front Immunol. 2022 Oct 24;13:1033774. doi: 10.3389/fimmu.2022.1033774. eCollection 2022.
4
CO exposure enhances Fos expression in hypothalamic neurons in rats during the light and dark phases of the diurnal cycle.
Brain Struct Funct. 2022 Nov;227(8):2667-2679. doi: 10.1007/s00429-022-02562-2. Epub 2022 Sep 15.
5
Vasopressin and Breathing: Review of Evidence for Respiratory Effects of the Antidiuretic Hormone.
Front Physiol. 2021 Oct 26;12:744177. doi: 10.3389/fphys.2021.744177. eCollection 2021.
6
Medullary Noradrenergic Neurons Mediate Hemodynamic Responses to Osmotic and Volume Challenges.
Front Physiol. 2021 Apr 23;12:649535. doi: 10.3389/fphys.2021.649535. eCollection 2021.

本文引用的文献

1
Hypothalamic PVN contributes to acute intermittent hypoxia-induced sympathetic but not phrenic long-term facilitation.
J Appl Physiol (1985). 2018 May 1;124(5):1233-1243. doi: 10.1152/japplphysiol.00743.2017. Epub 2017 Dec 21.
3
Organum Vasculosum of the Lamina Terminalis Detects NaCl to Elevate Sympathetic Nerve Activity and Blood Pressure.
Hypertension. 2017 Jan;69(1):163-170. doi: 10.1161/HYPERTENSIONAHA.116.08372. Epub 2016 Nov 28.
4
Purinergic receptors in the carotid body as a new drug target for controlling hypertension.
Nat Med. 2016 Oct;22(10):1151-1159. doi: 10.1038/nm.4173. Epub 2016 Sep 5.
5
Carotid sinus denervation ameliorates renovascular hypertension in adult Wistar rats.
J Physiol. 2016 Nov 1;594(21):6255-6266. doi: 10.1113/JP272708. Epub 2016 Sep 23.
6
Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia.
Am J Physiol Cell Physiol. 2016 Apr 15;310(8):C629-42. doi: 10.1152/ajpcell.00265.2015. Epub 2016 Jan 13.
8
Activation of the hypothalamic paraventricular nucleus by forebrain hypertonicity selectively increases tonic vasomotor sympathetic nerve activity.
Am J Physiol Regul Integr Comp Physiol. 2015 Mar 1;308(5):R351-9. doi: 10.1152/ajpregu.00460.2014. Epub 2014 Dec 17.
9
Regulation of breathing and autonomic outflows by chemoreceptors.
Compr Physiol. 2014 Oct;4(4):1511-62. doi: 10.1002/cphy.c140004.
10
Coupling of respiratory and sympathetic activities in rats submitted to chronic intermittent hypoxia.
Prog Brain Res. 2014;212:25-38. doi: 10.1016/B978-0-444-63488-7.00002-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验