Suppr超能文献

引入一个用于测量峰电位-局部场电位耦合的综合框架。

Introducing a Comprehensive Framework to Measure Spike-LFP Coupling.

作者信息

Zarei Mohammad, Jahed Mehran, Daliri Mohammad Reza

机构信息

Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran.

School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.

出版信息

Front Comput Neurosci. 2018 Oct 15;12:78. doi: 10.3389/fncom.2018.00078. eCollection 2018.

Abstract

Measuring the coupling of single neuron's spiking activities to the local field potentials (LFPs) is a method to investigate neuronal synchronization. The most important synchronization measures are phase locking value (PLV), spike field coherence (SFC), pairwise phase consistency (PPC), and spike-triggered correlation matrix synchronization (SCMS). Synchronization is generally quantified using the PLV and SFC. PLV and SFC methods are either biased on the spike rates or the number of trials. To resolve these problems the PPC measure has been introduced. However, there are some shortcomings associated with the PPC measure which is unbiased only for very high spike rates. However evaluating spike-LFP phase coupling (SPC) for short trials or low number of spikes is a challenge in many studies. Lastly, SCMS measures the correlation in terms of phase in regions around the spikes inclusive of the non-spiking events which is the major difference between SCMS and SPC. This study proposes a new framework for predicting a more reliable SPC by modeling and introducing appropriate machine learning algorithms namely least squares, Lasso, and neural networks algorithms where through an initial trend of the spike rates, the ideal SPC is predicted for neurons with low spike rates. Furthermore, comparing the performance of these three algorithms shows that the least squares approach provided the best performance with a correlation of 0.99214 and of 0.9563 in the training phase, and correlation of 0.95969 and of 0.8842 in the test phase. Hence, the results show that the proposed framework significantly enhances the accuracy and provides a bias-free basis for small number of spikes for SPC as compared to the conventional methods such as PLV method. As such, it has the general ability to correct for the bias on the number of spike rates.

摘要

测量单个神经元的放电活动与局部场电位(LFP)之间的耦合是研究神经元同步性的一种方法。最重要的同步性测量指标是锁相值(PLV)、锋场相干性(SFC)、成对相位一致性(PPC)和锋电位触发相关矩阵同步性(SCMS)。同步性通常使用PLV和SFC进行量化。PLV和SFC方法要么偏向于放电率,要么偏向于试验次数。为了解决这些问题,引入了PPC测量方法。然而,PPC测量方法存在一些缺点,它仅在非常高的放电率下才无偏差。然而,在许多研究中,评估短试验或低放电次数下的锋电位-LFP相位耦合(SPC)是一项挑战。最后,SCMS测量包括非放电事件在内的锋电位周围区域的相位相关性,这是SCMS与SPC的主要区别。本研究提出了一个新的框架,通过建模和引入适当的机器学习算法,即最小二乘法、套索法和神经网络算法,来预测更可靠的SPC,通过放电率的初始趋势,为低放电率的神经元预测理想的SPC。此外,比较这三种算法的性能表明,最小二乘法在训练阶段表现最佳,相关性为0.99214,均方根误差为0.9563,在测试阶段相关性为0.95969,均方根误差为0.8842。因此,结果表明,与传统方法如PLV方法相比,所提出的框架显著提高了准确性,并为少量放电的SPC提供了无偏差的基础。因此,它具有校正放电率数量偏差的一般能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验