Suppr超能文献

在大肠杆菌中构建甲羟戊酸途径并进行工程改造以生产异戊二烯。

Engineering and manipulation of a mevalonate pathway in Escherichia coli for isoprene production.

机构信息

National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Chaoyang District North Sanhuan Road no. 15, 100029, Beijing, People's Republic of China.

National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Binhu District Lihu Road no. 1800, Wuxi City, 214122, Jiangsu Province, China.

出版信息

Appl Microbiol Biotechnol. 2019 Jan;103(1):239-250. doi: 10.1007/s00253-018-9472-9. Epub 2018 Oct 30.

Abstract

Isoprene is a useful phytochemical with high commercial values in many industrial applications including synthetic rubber, elastomers, isoprenoid medicines, and fossil fuel. Currently, isoprene is on large scale produced from petrochemical sources. An efficient biological process for isoprene production utilizing renewable feedstocks would be an important direction of research due to the fossil raw material depletion and air pollution. In this study, we introduced the mevalonate (MVA) pathway genes/acetoacetyl-coenzyme A thiolase (mvaE) and MVA synthase (mvaS) from Enterococcus faecalis (E. faecalis); MVA kinase (mvk) derived from Methanosarcina mazei (M. mazei); and phosphomevalonate kinase (pmk), diphosphomevalonate decarboxylase (mvaD), and isopentenyl diphosphate isomerase (idi) from Streptococcus pneumoniae (S. pneumoniae) to accelerate dimethylallyl diphosphate (DMAPP) accumulation in Escherichia coli (E. coli). Together with a codon-optimized isoprene synthase (ispS) from Populus alba (P. alba), E. coli strain succeeded in formation of isoprene. We then manipulated the heterologous MVA pathway for high-level production of isoprene, by controlling the gene expression levels of the MVA pathway genes. We engineered four E. coli strains which showed different gene expression levels and different isoprene productivities, and we also characterized them with quantitative real-time PCR and metabolite analysis. To further improve the isoprene titers and release the toxicity to cells, we developed the extraction fermentation by adding dodecane in cultures. Finally, strain BL2T7P1TrcP harboring balanced gene expression system produced 587 ± 47 mg/L isoprene, with a 5.2-fold titer improvement in comparison with strain BL7CT7P. This work indicated that a balanced metabolic flux played a significant role to improve the isoprene production via MVA pathway.

摘要

异戊二烯是一种具有高商业价值的有用植物化学物质,在许多工业应用中都有应用,包括合成橡胶、弹性体、异戊二烯类药物和化石燃料。目前,异戊二烯主要从石化原料中大规模生产。利用可再生原料生产异戊二烯的高效生物过程将是一个重要的研究方向,因为化石原料正在枯竭,空气污染也日益严重。在本研究中,我们从粪肠球菌(Enterococcus faecalis)中引入了甲羟戊酸(MVA)途径基因/乙酰乙酰辅酶 A 硫解酶(mvaE)和 MVA 合酶(mvaS);来源于产甲烷八叠球菌(Methanosarcina mazei)的 MVA 激酶(mvk);以及来源于肺炎链球菌(Streptococcus pneumoniae)的磷酸甲羟戊酸激酶(pmk)、二磷酸甲羟戊酸脱羧酶(mvaD)和异戊烯二磷酸异构酶(idi),以加速二甲基丙烯基二磷酸(DMAPP)在大肠杆菌(Escherichia coli)中的积累。与来自白杨树(Populus alba)的优化密码子异戊烯合酶(ispS)一起,大肠杆菌菌株成功地形成了异戊二烯。然后,我们通过控制 MVA 途径基因的表达水平,对异源 MVA 途径进行了操纵,以实现异戊二烯的高产。我们构建了四个具有不同基因表达水平和不同异戊二烯生产力的大肠杆菌菌株,并通过定量实时 PCR 和代谢物分析对它们进行了表征。为了进一步提高异戊二烯的产量并减轻对细胞的毒性,我们在培养物中添加了正十二烷,开发了提取发酵。最后,携带平衡基因表达系统的菌株 BL2T7P1TrcP 产生了 587±47mg/L 的异戊二烯,与菌株 BL7CT7P 相比,产量提高了 5.2 倍。这项工作表明,平衡的代谢通量在通过 MVA 途径提高异戊二烯产量方面起着重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验