Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA.
Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA.
J Appl Toxicol. 2019 Mar;39(3):473-484. doi: 10.1002/jat.3738. Epub 2018 Oct 30.
Mast cells comprise a physiologically and toxicologically important cell type that is ubiquitous among species and tissues. Mast cells undergo degranulation, in which characteristic intracellular granules fuse with the plasma membrane and release many bioactive substances, such as enzymes β-hexosaminidase and tryptase. Activity of mast cells in the toxicology model organism, zebrafish, has been monitored via tryptase release and cleavage of substrate N-α-benzoyl-dl-Arg-p-nitroanilide (BAPNA). An extensively used in vitro mast cell model for studying toxicant mechanisms is the RBL-2H3 cell line. However, instead of tryptase, granule contents such as β-hexosaminidase have usually been employed as RBL-2H3 degranulation markers. To align RBL-2H3 cell toxicological studies to in vivo mast cell studies using zebrafish, we aimed to develop an RBL-2H3 tryptase assay. Unexpectedly, we discovered that tryptase release from RBL-2H3 cells is not detectable, using BAPNA substrate, despite optimized assay that can detect as little as 1 ng tryptase. Additional studies performed with another substrate, tosyl-Gly-Pro-Lys-pNA, and with an enzyme-linked immunosorbent assay, revealed a lack of tryptase protein released from stimulated RBL-2H3 cells. Furthermore, none of the eight rat tryptase genes (Tpsb2, Tpsab1, Tpsg1, Prss34, Gzmk, Gzma, Prss29, Prss41) is expressed in RBL-2H3 cells, even though all are found in RBL-2H3 genomic DNA and even though β-hexosaminidase mRNA is constitutively expressed. Therefore, mast cell researchers should utilize β-hexosaminidase or another reliable marker for RBL-2H3 degranulation studies, not tryptase. Comparative toxicity testing in RBL-2H3 cells in vitro and in zebrafish mast cells in vivo will require use of a degranulation reporter different from tryptase.
肥大细胞是一种在生理和毒理学上都很重要的细胞类型,普遍存在于各种物种和组织中。肥大细胞会发生脱粒作用,其中特征性的细胞内颗粒与质膜融合并释放许多生物活性物质,如β-己糖胺酶和胰蛋白酶。在毒理学模式生物斑马鱼中,通过胰蛋白酶释放和 N-α-苯甲酰基-dl-精氨酸对硝基苯胺(BAPNA)的切割来监测肥大细胞的活性。用于研究毒物机制的广泛使用的体外肥大细胞模型是 RBL-2H3 细胞系。然而,除了胰蛋白酶之外,颗粒内容物如β-己糖胺酶通常被用作 RBL-2H3 脱粒的标志物。为了使 RBL-2H3 细胞毒理学研究与使用斑马鱼的体内肥大细胞研究保持一致,我们旨在开发一种 RBL-2H3 胰蛋白酶测定法。出乎意料的是,尽管优化了测定法,可以检测到低至 1ng 的胰蛋白酶,但仍无法检测到 RBL-2H3 细胞从 BAPNA 底物中释放的胰蛋白酶。使用另一种底物 tosyl-Gly-Pro-Lys-pNA 以及酶联免疫吸附测定法进行的进一步研究表明,从受刺激的 RBL-2H3 细胞释放的胰蛋白酶蛋白缺乏。此外,即使在 RBL-2H3 基因组 DNA 中发现了所有 8 种大鼠胰蛋白酶基因(Tpsb2、Tpsab1、Tpsg1、Prss34、Gzmk、Gzma、Prss29、Prss41),并且β-己糖胺酶 mRNA 持续表达,这些基因在 RBL-2H3 细胞中也均不表达。因此,肥大细胞研究人员应该在 RBL-2H3 脱粒研究中使用β-己糖胺酶或其他可靠的标志物,而不是胰蛋白酶。在体外的 RBL-2H3 细胞中和体内的斑马鱼肥大细胞中进行比较毒性测试,需要使用与胰蛋白酶不同的脱粒报告基因。