Suppr超能文献

锥形纳米线自旋霍尔振荡器中多种自振荡模式的注入锁定

Injection locking of multiple auto-oscillation modes in a tapered nanowire spin Hall oscillator.

作者信息

Wagner Kai, Smith Andrew, Hache Toni, Chen Jen-Ru, Yang Liu, Montoya Eric, Schultheiss Katrin, Lindner Jürgen, Fassbender Jürgen, Krivorotov Ilya, Schultheiss Helmut

机构信息

Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328, Dresden, Germany.

TU Dresden, 01328, Dresden, Germany.

出版信息

Sci Rep. 2018 Oct 30;8(1):16040. doi: 10.1038/s41598-018-34271-4.

Abstract

Spin Hall oscillators (SHO) are promising candidates for the generation, detection and amplification of high frequency signals, that are tunable through a wide range of operating frequencies. They offer to be read out electrically, magnetically and optically in combination with a simple bilayer design. Here, we experimentally study the spatial dependence and spectral properties of auto-oscillations in SHO devices based on Pt(7 nm)/NiFe(5 nm) tapered nanowires. Using Brillouin light scattering microscopy, we observe two individual self-localized spin-wave bullets that oscillate at two distinct frequencies (5.2 GHz and 5.45 GHz) and are localized at different positions separated by about 750 nm within the SHO. This state of a tapered SHO has been predicted by a Ginzburg-Landau auto-oscillator model, but not yet been directly confirmed experimentally. We demonstrate that the observed bullets can be individually synchronized to external microwave signals, leading to a frequency entrainment, linewidth reduction and increase in oscillation amplitude for the bullet that is selected by the microwave frequency. At the same time, the amplitude of other parasitic modes decreases, which promotes the single-mode operation of the SHO. Finally, the synchronization of the spin-wave bullets is studied as a function of the microwave power. We believe that our findings promote the realization of extended spin Hall oscillators accomodating several distinct spin-wave bullets, that jointly cover an extended range of tunability.

摘要

自旋霍尔振荡器(SHO)是产生、检测和放大高频信号的有前途的候选者,其可在很宽的工作频率范围内进行调谐。它们可以通过简单的双层设计以电、磁和光的方式进行读出。在此,我们通过实验研究了基于Pt(7 nm)/NiFe(5 nm)锥形纳米线的SHO器件中自激振荡的空间依赖性和光谱特性。使用布里渊光散射显微镜,我们观察到两个单独的自局域化自旋波子弹,它们以两个不同的频率(5.2 GHz和5.45 GHz)振荡,并局域在SHO内相距约750 nm的不同位置。这种锥形SHO的状态已由金兹堡 - 朗道自激振荡器模型预测,但尚未通过实验直接证实。我们证明,观察到的子弹可以分别与外部微波信号同步,导致频率锁定、线宽减小以及被微波频率选择的子弹的振荡幅度增加。同时,其他寄生模式的幅度减小,这促进了SHO的单模运行。最后,研究了自旋波子弹的同步作为微波功率的函数。我们相信,我们的发现促进了容纳多个不同自旋波子弹的扩展自旋霍尔振荡器的实现,这些子弹共同覆盖了扩展的可调谐范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e78a/6207682/70b0ea477584/41598_2018_34271_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验