Hache Toni, Anshu Anshu, Shalomayeva Tetyana, Richter Gunther, Stöhr Rainer, Kern Klaus, Wrachtrup Jörg, Singha Aparajita
Max Planck Institute for Solid State Research, Heisenbergstr. 1, Stuttgart, 70569, Germany.
3rd Institute of Physics and Research Center SCoPE, University of Stuttgart, Stuttgart, 70049, Germany.
Nano Lett. 2025 Feb 5;25(5):1917-1924. doi: 10.1021/acs.nanolett.4c05531. Epub 2025 Jan 22.
Spin Hall nano-oscillators convert DC to magnetic auto-oscillations in the microwave regime. Current research on these devices is dedicated to creating next-generation energy-efficient hardware for communication technologies. Despite intensive research on magnetic auto-oscillations within the past decade, the nanoscale mapping of those dynamics remained a challenge. We image the distribution of free-running magnetic auto-oscillations by driving the electron spin resonance transition of a single spin quantum sensor, enabling fast acquisition (100 ms/pixel). With quantitative magnetometry, we experimentally demonstrate for the first time that the auto-oscillation spots are localized at magnetic field minima acting as local potential wells for confining spin-waves. By comparing the magnitudes of the magnetic stray field at these spots, we decipher the different frequencies of the auto-oscillation modes. The insights gained regarding the interaction between auto-oscillation modes and spin-wave potential wells enable advanced engineering of real devices.
自旋霍尔纳米振荡器可在微波频段将直流电转换为磁自振荡。目前对这些器件的研究致力于为通信技术打造下一代节能硬件。尽管在过去十年中对磁自振荡进行了深入研究,但对这些动力学的纳米级映射仍是一项挑战。我们通过驱动单个自旋量子传感器的电子自旋共振跃迁,对自由运行的磁自振荡分布进行成像,实现了快速采集(每像素100毫秒)。通过定量磁强计,我们首次通过实验证明自振荡点位于磁场最小值处,这些最小值充当了限制自旋波的局部势阱。通过比较这些点处的杂散磁场大小,我们解读了自振荡模式的不同频率。关于自振荡模式与自旋波势阱之间相互作用的见解有助于对实际器件进行先进的工程设计。