Royal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3731 GA, De Bilt, The Netherlands.
Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Nijenborgh 6/7, 9747 AG, Groningen, The Netherlands.
Sci Rep. 2018 Oct 30;8(1):16001. doi: 10.1038/s41598-018-34450-3.
The Arctic region is warming two to three times faster than the global mean, intensifying the hydrological cycle in the high north. Both enhanced regional evaporation and poleward moisture transport contribute to a 50-60% increase in Arctic precipitation over the 21 century. The additional precipitation is diagnosed to fall primarily as rain, but the physical and dynamical constraints governing the transition to a rain-dominated Arctic are unknown. Here we use actual precipitation, snowfall, rainfall output of 37 global climate models in standardised 21-century simulations to demonstrate that, on average, the main contributor to additional Arctic (70-90°N) rainfall is local warming (~70%), whereas non-local (thermo)dynamical processes associated with precipitation changes contribute only 30%. Surprisingly, the effect of local warming peaks in the frigid high Arctic, where modest summer temperature changes exert a much larger effect on rainfall changes than strong wintertime warming. This counterintuitive seasonality exhibits steep geographical gradients, however, governed by non-linear changes in the temperature-dependent snowfall fraction, thereby obscuring regional-scale attribution of enhanced Arctic rainfall to climate warming. Detailed knowledge of the underlying causes behind Arctic snow/rainfall changes will contribute to more accurate assessments of the (possibly irreversible) impacts on hydrology/run-off, permafrost thawing, ecosystems, sea ice retreat, and glacier melt.
北极地区的升温速度是全球平均水平的两到三倍,这加剧了高纬度地区的水文循环。增强的区域蒸发和向极地的水汽输送,导致北极地区降水在 21 世纪增加了 50-60%。据诊断,额外的降水主要以雨的形式出现,但控制北极向雨主导型过渡的物理和动力限制尚不清楚。在这里,我们使用实际降水、降雪和 37 个全球气候模型在标准 21 世纪模拟中的降雨输出,证明了平均而言,导致北极(70-90°N)降水增加的主要因素是当地变暖(约 70%),而与降水变化相关的非本地(热力)动力过程仅贡献 30%。令人惊讶的是,当地变暖的影响在严寒的高纬度地区达到峰值,在那里夏季温和的温度变化对降雨变化的影响比冬季强烈的变暖更大。这种违反直觉的季节性表现出陡峭的地理梯度,但受到与温度相关的降雪量的非线性变化的控制,从而掩盖了气候变暖导致北极地区降水增加的区域规模归因。对北极地区雪/雨变化背后的潜在原因的详细了解,将有助于更准确地评估对水文/径流、永久冻土融化、生态系统、海冰退缩和冰川融化的(可能是不可逆转的)影响。