Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland.
Stat Med. 2019 Feb 20;38(4):501-511. doi: 10.1002/sim.8011. Epub 2018 Oct 30.
Shared random parameter models (SRPMs) were first introduced by researchers at the National Heart Lung and Blood Institute (NHLBI) Biostatistics Branch for analyzing longitudinal data with informative dropout (Wu and Carroll, 1987; Wu and Bailey, 1988; Follmann and Wu, 1995; Albert and Follmann, 2000; Albert et al, 2002). This work was all focused on characterizing the longitudinal data process in the presence of an informative missing data mechanism that is treated as a nuisance. Shared random parameter modeling approaches have also been developed from the perspective of characterizing the relationship between longitudinal data and a subsequent outcome that may be an event time, a dichotomous measurement, or another longitudinal outcome. This article will review the early contributions of the NHLBI biostatisticians on SRPMs for analyzing longitudinal data with dropout and demonstrate how these ideas have, more recently, been applied in these other areas of biostatistics. Rather than focus on technical details or specific analyses, this article presents a conceptual framework for SRPMs within a historical context.
共享随机参数模型(SRPM)最初是由美国国立心肺血液研究所(NHLBI)生物统计学分部的研究人员提出的,用于分析具有信息缺失的纵向数据(Wu 和 Carroll,1987;Wu 和 Bailey,1988;Follmann 和 Wu,1995;Albert 和 Follmann,2000;Albert 等人,2002)。这项工作主要集中在描述存在信息缺失机制的纵向数据过程,该机制被视为干扰因素。从描述纵向数据与随后的结果之间的关系的角度出发,也已经开发了共享随机参数建模方法,而后者可能是事件时间、二分类测量或另一个纵向结果。本文将回顾 NHLBI 生物统计学家在分析具有缺失数据的纵向数据时对 SRPM 的早期贡献,并展示这些想法最近如何在这些其他生物统计学领域得到应用。本文不是专注于技术细节或特定分析,而是在历史背景下为 SRPM 提供了一个概念框架。