You L U, Salami Falastin, Törn Carina, Lernmark Åke, Tamura Roy
Health Informatics Institute, University of South Florida, Tampa, Florida, U.S.A.
Department of Clinical Sciences, Lund University, Malmö, Sweden.
Ann Appl Stat. 2024 Sep;18(3):2444-2461. doi: 10.1214/24-aoas1889. Epub 2024 Aug 5.
It is oftentimes the case in studies of disease progression that subjects can move into one of several disease states of interest. Multistate models are an indispensable tool to analyze data from such studies. The Environmental Determinants of Diabetes in the Young (TEDDY) is an observational study of at-risk children from birth to onset of type-1 diabetes (T1D) up through the age of 15. A joint model for simultaneous inference of multistate and multivariate nonparametric longitudinal data is proposed to analyze data and answer the research questions brought up in the study. The proposed method allows us to make statistical inferences, test hypotheses, and make predictions about future state occupation in the TEDDY study. The performance of the proposed method is evaluated by simulation studies. The proposed method is applied to the motivating example to demonstrate the capabilities of the method.
在疾病进展研究中,受试者常常会进入几种感兴趣的疾病状态之一。多状态模型是分析此类研究数据的不可或缺的工具。青少年糖尿病环境决定因素(TEDDY)研究是一项针对有患1型糖尿病(T1D)风险的儿童从出生到15岁发病的观察性研究。本文提出了一种联合模型,用于同时推断多状态和多变量非参数纵向数据,以分析数据并回答该研究中提出的研究问题。所提出的方法使我们能够在TEDDY研究中进行统计推断、检验假设并对未来的状态占据情况进行预测。通过模拟研究评估了所提出方法的性能。该方法应用于激励性示例以展示其能力。