Department of Clinical Neurophysiology and MedTech West, Institute of Neuroscience and Physiology, Sahlgrenska Academy & the University of Gothenburg, Gothenburg, Sweden.
MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
Hum Brain Mapp. 2019 Mar;40(4):1353-1375. doi: 10.1002/hbm.24445. Epub 2018 Oct 31.
The hippocampus, a hub of activity for a variety of important cognitive processes, is a target of increasing interest for researchers and clinicians. Magnetoencephalography (MEG) is an attractive technique for imaging spectro-temporal aspects of function, for example, neural oscillations and network timing, especially in shallow cortical structures. However, the decrease in MEG signal-to-noise ratio as a function of source depth implies that the utility of MEG for investigations of deeper brain structures, including the hippocampus, is less clear. To determine whether MEG can be used to detect and localize activity from the hippocampus, we executed a systematic review of the existing literature and found successful detection of oscillatory neural activity originating in the hippocampus with MEG. Prerequisites are the use of established experimental paradigms, adequate coregistration, forward modeling, analysis methods, optimization of signal-to-noise ratios, and protocol trial designs that maximize contrast for hippocampal activity while minimizing those from other brain regions. While localizing activity to specific sub-structures within the hippocampus has not been achieved, we provide recommendations for improving the reliability of such endeavors.
海马体是多种重要认知过程的活动中心,越来越受到研究人员和临床医生的关注。脑磁图(MEG)是一种用于成像功能的光谱-时间方面的有吸引力的技术,例如神经振荡和网络定时,特别是在浅层皮质结构中。然而,MEG 信号-噪声比随源深度的降低意味着 MEG 用于研究包括海马体在内的更深层脑结构的效用不太明确。为了确定 MEG 是否可用于检测和定位来自海马体的活动,我们对现有文献进行了系统回顾,发现 MEG 成功地检测到源自海马体的振荡神经活动。前提是使用既定的实验范式、充分的配准、正向建模、分析方法、优化信噪比,以及最大限度地提高海马体活动对比、同时最小化来自其他脑区活动的方案试验设计。虽然还没有实现将活动定位到海马体的特定亚结构,但我们提供了改进此类努力可靠性的建议。