Suppr超能文献

使用 MEG 中的波束形成器检测和定位海马体活动:使用模拟和经验数据进行的详细研究。

Detection and localization of hippocampal activity using beamformers with MEG: a detailed investigation using simulations and empirical data.

机构信息

Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada.

出版信息

Hum Brain Mapp. 2011 May;32(5):812-27. doi: 10.1002/hbm.21068.

Abstract

The ability to detect neuronal activity emanating from deep brain structures such as the hippocampus using magnetoencephalography has been debated in the literature. While a significant number of recent publications reported activations from deep brain structures, others reported their inability to detect such activity even when other detection modalities confirmed its presence. In this article, we relied on realistic simulations to show that both sides of this debate are correct and that these findings are reconcilable. We show that the ability to detect such activations in evoked responses depends on the signal strength, the amount of brain noise background, the experimental design parameters, and the methodology used to detect them. Furthermore, we show that small signal strengths require contrasts with control conditions to be detected, particularly in the presence of strong brain noise backgrounds. We focus on one localization technique, the adaptive spatial filter (beamformer), and examine its strengths and weaknesses in reconstructing hippocampal activations, in the presence of other strong brain sources such as visual activations, and compare the performance of the vector and scalar beamformers under such conditions. We show that although a weight-normalized beamformer combined with a multisphere head model is not biased in the presence of uncorrelated random noise, it can be significantly biased in the presence of correlated brain noise. Furthermore, we show that the vector beamformer performs significantly better than the scalar under such conditions. We corroborate our findings empirically using real data and demonstrate our ability to detect and localize such sources.

摘要

使用脑磁图(MEG)从海马体等深部脑结构检测神经元活动的能力在文献中存在争议。虽然最近有大量出版物报道了来自深部脑结构的激活,但也有其他出版物报告说,即使其他检测模式证实了这种活动的存在,他们也无法检测到这种活动。在本文中,我们依赖于现实模拟来表明这场争论的双方都是正确的,并且这些发现是可以调和的。我们表明,在诱发电响应中检测到这种激活的能力取决于信号强度、大脑噪声背景的数量、实验设计参数以及用于检测它们的方法。此外,我们表明,小信号强度需要与对照条件进行对比才能被检测到,特别是在存在强大脑噪声背景的情况下。我们专注于一种定位技术,即自适应空间滤波器(波束形成器),并检查其在存在其他强脑源(如视觉激活)的情况下重建海马体激活的优缺点,并在这种情况下比较矢量和标量波束形成器的性能。我们表明,尽管在存在不相关随机噪声的情况下,加权归一化波束形成器与多球体头部模型结合使用不会产生偏差,但在存在相关大脑噪声的情况下,它可能会产生显著偏差。此外,我们表明,在这种情况下,矢量波束形成器的性能明显优于标量波束形成器。我们使用真实数据进行了实证验证,并展示了我们检测和定位这些源的能力。

相似文献

3
Signal space separation beamformer.信号空间分离波束形成器。
Brain Topogr. 2010 Jun;23(2):128-33. doi: 10.1007/s10548-009-0120-7. Epub 2009 Nov 27.

引用本文的文献

本文引用的文献

6
Optimising experimental design for MEG beamformer imaging.优化用于脑磁图波束形成器成像的实验设计。
Neuroimage. 2008 Feb 15;39(4):1788-802. doi: 10.1016/j.neuroimage.2007.09.050. Epub 2007 Oct 10.
10
Modified beamformers for coherent source region suppression.用于相干源区域抑制的改进波束形成器。
IEEE Trans Biomed Eng. 2006 Jul;53(7):1357-63. doi: 10.1109/TBME.2006.873752.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验