Suppr超能文献

基于最大熵均值框架的深部脑活动的 EEG/MEG 源成像:癫痫中的模拟和验证。

EEG/MEG source imaging of deep brain activity within the maximum entropy on the mean framework: Simulations and validation in epilepsy.

机构信息

Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada.

Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada.

出版信息

Hum Brain Mapp. 2024 Jul 15;45(10):e26720. doi: 10.1002/hbm.26720.

Abstract

Electro/Magneto-EncephaloGraphy (EEG/MEG) source imaging (EMSI) of epileptic activity from deep generators is often challenging due to the higher sensitivity of EEG/MEG to superficial regions and to the spatial configuration of subcortical structures. We previously demonstrated the ability of the coherent Maximum Entropy on the Mean (cMEM) method to accurately localize the superficial cortical generators and their spatial extent. Here, we propose a depth-weighted adaptation of cMEM to localize deep generators more accurately. These methods were evaluated using realistic MEG/high-density EEG (HD-EEG) simulations of epileptic activity and actual MEG/HD-EEG recordings from patients with focal epilepsy. We incorporated depth-weighting within the MEM framework to compensate for its preference for superficial generators. We also included a mesh of both hippocampi, as an additional deep structure in the source model. We generated 5400 realistic simulations of interictal epileptic discharges for MEG and HD-EEG involving a wide range of spatial extents and signal-to-noise ratio (SNR) levels, before investigating EMSI on clinical HD-EEG in 16 patients and MEG in 14 patients. Clinical interictal epileptic discharges were marked by visual inspection. We applied three EMSI methods: cMEM, depth-weighted cMEM and depth-weighted minimum norm estimate (MNE). The ground truth was defined as the true simulated generator or as a drawn region based on clinical information available for patients. For deep sources, depth-weighted cMEM improved the localization when compared to cMEM and depth-weighted MNE, whereas depth-weighted cMEM did not deteriorate localization accuracy for superficial regions. For patients' data, we observed improvement in localization for deep sources, especially for the patients with mesial temporal epilepsy, for which cMEM failed to reconstruct the initial generator in the hippocampus. Depth weighting was more crucial for MEG (gradiometers) than for HD-EEG. Similar findings were found when considering depth weighting for the wavelet extension of MEM. In conclusion, depth-weighted cMEM improved the localization of deep sources without or with minimal deterioration of the localization of the superficial sources. This was demonstrated using extensive simulations with MEG and HD-EEG and clinical MEG and HD-EEG for epilepsy patients.

摘要

深部源的癫痫活动的电/磁脑图 (EEG/MEG) 源成像 (EMSI) 通常具有挑战性,这是因为 EEG/MEG 对表面区域更敏感,并且亚皮质结构的空间配置也是如此。我们之前已经证明了相干最大熵均值 (cMEM) 方法能够准确定位浅层皮质源及其空间范围。在这里,我们提出了一种深度加权的 cMEM 方法,以更准确地定位深部源。这些方法使用癫痫活动的真实 MEG/高密度 EEG (HD-EEG) 模拟和来自局灶性癫痫患者的实际 MEG/HD-EEG 记录进行了评估。我们在 MEM 框架内纳入了深度加权,以补偿其对浅层源的偏好。我们还在源模型中包括了海马体的网格,作为另一个深部结构。我们生成了 5400 个涉及广泛空间范围和信噪比 (SNR) 水平的癫痫发作间期放电的真实 MEG 和 HD-EEG 模拟,然后在 16 名患者的临床 HD-EEG 和 14 名患者的 MEG 上进行了 EMSI 研究。临床发作间期癫痫发作通过视觉检查标记。我们应用了三种 EMSI 方法:cMEM、深度加权 cMEM 和深度加权最小范数估计 (MNE)。真实情况被定义为真实模拟源或基于患者可用临床信息绘制的区域。对于深部源,与 cMEM 和深度加权 MNE 相比,深度加权 cMEM 改善了定位,而对于表面源,深度加权 cMEM 并未降低定位准确性。对于患者数据,我们观察到深部源的定位有所改善,特别是对于内侧颞叶癫痫患者,cMEM 未能重建海马体中的初始源。对于 MEG(梯度计),深度加权比 HD-EEG 更为重要。当考虑 MEM 的小波扩展的深度加权时,也发现了类似的发现。总之,深度加权 cMEM 改善了深部源的定位,而不会或最小程度地恶化浅层源的定位。这是使用 MEG 和 HD-EEG 的广泛模拟以及癫痫患者的临床 MEG 和 HD-EEG 证明的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3af/11240147/2028048dd01e/HBM-45-e26720-g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验