Suppr超能文献

氦纳米液滴表面 K 原子的 4s 到 5s 和 4p 光激发动力学:理论研究。

4s to 5s and 4p photoexcitation dynamics of K atoms from the surface of helium nanodroplets: a theoretical study.

机构信息

Laboratoire Collisions Agrégats Réactivité (LCAR), IRSAMC, Université de Toulouse, CNRS UMR 5589, Toulouse, France.

出版信息

Phys Chem Chem Phys. 2019 Feb 13;21(7):3626-3636. doi: 10.1039/c8cp05253k.

Abstract

We study the photodissociation of the potassium atom from a superfluid helium nanodroplet upon 5s 2S or 4p 2P excitation using the time-dependent helium density functional method (He-TDDFT). The importance of quantum effects is assessed by comparing the absorption spectrum obtained for a classical or a quantum description of the K atom. In the case of the 5s 2S ← 4s 2S excitation the difference is rather large, and we use a quantum description for the ensuing direct dissociation dynamics. In the case of the 4p 2P ← 4s 2S absorption spectrum, the difference is much smaller, hence a classical description of K is used to describe 4p 2P excitation dynamics. Excitation to the 4p 2Σ1/2 state leads to the direct dissociation of the K atom, while the 4p 2Π3/2 state initially leads to the formation of an exciplex and the 4p 2Π1/2 state to a bouncing atom above the droplet surface. Remarkably, electronic relaxation can be observed for the latter two states, leading to spin-orbit relaxation and the binding of the initially departing one-atom excimer as a ring excimer for the 2P3/2 state and to the formation of a bound, ring excimer for the 2Π1/2 state.

摘要

我们使用时间相关的氦密度泛函方法(He-TDDFT)研究了超流氦纳米液滴中钾原子在 5s 2S 或 4p 2P 激发下的光解。通过比较经典或量子描述的 K 原子的吸收光谱来评估量子效应的重要性。对于 5s 2S ← 4s 2S 激发,差异相当大,因此我们对随后的直接解离动力学采用量子描述。对于 4p 2P ← 4s 2S 吸收光谱,差异要小得多,因此使用经典描述来描述 K 的 4p 2P 激发动力学。激发到 4p 2Σ1/2 态会导致 K 原子的直接解离,而 4p 2Π3/2 态最初会导致形成激合体,4p 2Π1/2 态会导致在液滴表面上方反弹的原子。值得注意的是,对于后两种状态可以观察到电子弛豫,导致自旋轨道弛豫,并将最初离解的单原子激合体结合为 2P3/2 态的环状激合体,并为 2Π1/2 态形成束缚的环状激合体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验