Université de Lorraine, CNRS, LPCT UMR 7019, Boulevard des Aiguillettes, Vandoeuvre-lès-Nancy, 54000, Nancy, France.
Departamento de Química, Centro de Investigacíon en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios, 53, 26006, Logroño, Spain.
Chemistry. 2019 Feb 18;25(10):2519-2526. doi: 10.1002/chem.201803685. Epub 2019 Jan 11.
A computational investigation of the triplet excited states of a rhenium complex electronically coupled with a tryptophan side chain and bound to an azurin protein is presented. In particular, by using high-level molecular modeling, evidence is provided for how the electronic properties of the excited-state manifolds strongly depend on coupling with the environment. Indeed, only upon explicitly taking into account the protein environment can two stable triplet states of metal-to-ligand charge transfer or charge-separated nature be recovered. In addition, it is also demonstrated how the rhenium complex plus tryptophan system in an aqueous environment experiences too much flexibility, which prevents the two chromophores from being electronically coupled. This occurrence disables the formation of a charge-separated state. The successful strategy requires a multiscale approach of combining molecular dynamics and quantum chemistry. In this context, the strategy used to parameterize the force fields for the electronic triplet states of the metal complex is also presented.
呈现了对与色氨酸侧链电子耦合并结合到天青蛋白的铼配合物的三重激发态的计算研究。特别是,通过使用高级分子建模,提供了证据表明激发态分子的电子性质如何强烈依赖于与环境的耦合。实际上,只有在明确考虑蛋白质环境的情况下,才能恢复具有金属-配体电荷转移或电荷分离性质的两个稳定三重态。此外,还证明了在水相环境中,铼配合物加色氨酸系统的过度灵活性如何阻止两个生色团进行电子耦合。这种情况阻止了电荷分离状态的形成。成功的策略需要结合分子动力学和量子化学的多尺度方法。在这种情况下,还介绍了用于金属配合物电子三重态的力场参数化的策略。