Suppr超能文献

大鼠头方向细胞的三维调谐。

Three-dimensional tuning of head direction cells in rats.

机构信息

Department of Psychological and Brain Sciences, Dartmouth College , Hanover, New Hampshire.

出版信息

J Neurophysiol. 2019 Jan 1;121(1):4-37. doi: 10.1152/jn.00880.2017. Epub 2018 Oct 31.

Abstract

Head direction (HD) cells fire when the animal faces that cell's preferred firing direction (PFD) in the horizontal plane. The PFD response when the animal is oriented outside the earth-horizontal plane could result from cells representing direction in the plane of locomotion or as a three-dimensional (3D), global-referenced direction anchored to gravity. To investigate these possibilities, anterodorsal thalamic HD cells were recorded from restrained rats while they were passively positioned in various 3D orientations. Cell responses were unaffected by pitch or roll up to ~90° from the horizontal plane. Firing was disrupted once the animal was oriented >90° away from the horizontal plane and during inversion. When rolling the animal around the earth-vertical axis, cells were active when the animal's ventral surface faced the cell's PFD. However, with the rat rolled 90° in an ear-down orientation, pitching the rat and rotating it around the vertical axis did not produce directionally tuned responses. Complex movements involving combinations of yaw-roll, but usually not yaw-pitch, resulted in reduced directional tuning even at the final upright orientation when the rat had full visual view of its environment and was pointing in the cell's PFD. Directional firing was restored when the rat's head was moved back-and-forth. There was limited evidence indicating that cells contained conjunctive firing with pitch or roll positions. These findings suggest that the brain's representation of directional heading is derived primarily from horizontal canal information and that the HD signal is a 3D gravity-referenced signal anchored to a direction in the horizontal plane. NEW & NOTEWORTHY This study monitored head direction cell responses from rats in three dimensions using a series of manipulations that involved yaw, pitch, roll, or a combination of these rotations. Results showed that head direction responses are consistent with the use of two reference frames simultaneously: one defined by the surrounding environment using primarily visual landmarks and a second defined by the earth's gravity vector.

摘要

头部方向 (HD) 细胞在动物面向其在水平平面中的首选发射方向 (PFD) 时发射。当动物位于地球水平平面之外时,PFD 响应可能来自代表运动平面中的方向的细胞,或者作为与重力锚定的三维 (3D)、全局参考方向。为了研究这些可能性,从束缚大鼠的前背丘脑 HD 细胞中记录,同时将它们被动置于各种 3D 方向。细胞反应不受俯仰或滚动的影响,直到距水平平面约 90°。一旦动物偏离水平平面 >90°并反转,发射就会中断。当围绕地球垂直轴滚动动物时,当动物的腹侧表面面向细胞的 PFD 时,细胞会活跃。然而,当大鼠以耳向下的方向旋转 90°时,使大鼠俯仰并围绕垂直轴旋转不会产生方向调谐响应。涉及偏航-滚动组合的复杂运动,但通常不涉及偏航-俯仰,即使在大鼠完全看到其环境并指向细胞 PFD 的最终直立方向时,也会导致方向调谐降低。当大鼠的头前后移动时,方向发射得到恢复。有有限的证据表明细胞包含与俯仰或滚动位置的联合发射。这些发现表明,大脑对方向朝向的表示主要来自水平管信息,并且 HD 信号是一个锚定到水平平面中方向的 3D 重力参考信号。新的和值得注意的是,本研究使用涉及偏航、俯仰、滚动或这些旋转的组合的一系列操作,从三维监测大鼠的头部方向细胞反应。结果表明,头部方向响应与同时使用两个参考框架一致:一个由周围环境使用主要视觉地标定义,另一个由地球重力矢量定义。

相似文献

1
Three-dimensional tuning of head direction cells in rats.
J Neurophysiol. 2019 Jan 1;121(1):4-37. doi: 10.1152/jn.00880.2017. Epub 2018 Oct 31.
2
Commutative Properties of Head Direction Cells during Locomotion in 3D: Are All Routes Equal?
J Neurosci. 2020 Apr 8;40(15):3035-3051. doi: 10.1523/JNEUROSCI.2789-19.2020. Epub 2020 Mar 3.
3
Maintenance of rat head direction cell firing during locomotion in the vertical plane.
J Neurophysiol. 2000 Jan;83(1):393-405. doi: 10.1152/jn.2000.83.1.393.
4
On the absence or presence of 3D tuned head direction cells in rats: a review and rebuttal.
J Neurophysiol. 2020 May 1;123(5):1808-1827. doi: 10.1152/jn.00475.2019. Epub 2020 Mar 25.
5
Self-motion improves head direction cell tuning.
J Neurophysiol. 2014 Jun 15;111(12):2479-92. doi: 10.1152/jn.00512.2013. Epub 2014 Mar 26.
6
Head direction cell activity monitored in a novel environment and during a cue conflict situation.
J Neurophysiol. 1995 Nov;74(5):1953-71. doi: 10.1152/jn.1995.74.5.1953.
9
Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity.
J Neurosci. 1998 Nov 1;18(21):9020-37. doi: 10.1523/JNEUROSCI.18-21-09020.1998.
10
Updating of the spatial reference frame of head direction cells in response to locomotion in the vertical plane.
J Neurophysiol. 2013 Feb;109(3):873-88. doi: 10.1152/jn.00239.2012. Epub 2012 Oct 31.

引用本文的文献

1
Modeling hippocampal spatial cells in rodents navigating in 3D environments.
Sci Rep. 2024 Jul 19;14(1):16714. doi: 10.1038/s41598-024-66755-x.
2
The mosaic structure of the mammalian cognitive map.
Learn Behav. 2024 Mar;52(1):19-34. doi: 10.3758/s13420-023-00618-9. Epub 2024 Jan 17.
3
The Neural Correlates of Spatial Disorientation in Head Direction Cells.
eNeuro. 2022 Dec 19;9(6). doi: 10.1523/ENEURO.0174-22.2022. Print 2022 Nov-Dec.
4
Can rats and ants exchange information between the horizontal and vertical domains?
Anim Cogn. 2023 Jun;26(3):1083-1089. doi: 10.1007/s10071-022-01716-3. Epub 2022 Nov 21.
5
A small step for rats alters spatial behavior: rats on a bi-level arena explore each level separately.
Anim Cogn. 2023 Mar;26(2):655-666. doi: 10.1007/s10071-022-01710-9. Epub 2022 Nov 1.
6
Elemental and Configural Associative Learning in Spatial Tasks: Could Zebrafish be Used to Advance Our Knowledge?
Front Behav Neurosci. 2020 Dec 17;14:570704. doi: 10.3389/fnbeh.2020.570704. eCollection 2020.
7
A gravity-based three-dimensional compass in the mouse brain.
Nat Commun. 2020 Apr 15;11(1):1855. doi: 10.1038/s41467-020-15566-5.
8
On the absence or presence of 3D tuned head direction cells in rats: a review and rebuttal.
J Neurophysiol. 2020 May 1;123(5):1808-1827. doi: 10.1152/jn.00475.2019. Epub 2020 Mar 25.
9
Commutative Properties of Head Direction Cells during Locomotion in 3D: Are All Routes Equal?
J Neurosci. 2020 Apr 8;40(15):3035-3051. doi: 10.1523/JNEUROSCI.2789-19.2020. Epub 2020 Mar 3.
10
The head direction cell network: attractor dynamics, integration within the navigation system, and three-dimensional properties.
Curr Opin Neurobiol. 2020 Feb;60:136-144. doi: 10.1016/j.conb.2019.12.002. Epub 2019 Dec 23.

本文引用的文献

1
A dual-axis rotation rule for updating the head direction cell reference frame during movement in three dimensions.
J Neurophysiol. 2018 Jan 1;119(1):192-208. doi: 10.1152/jn.00501.2017. Epub 2017 Oct 11.
2
Lesions of the Head Direction Cell System Increase Hippocampal Place Field Repetition.
Curr Biol. 2017 Sep 11;27(17):2706-2712.e2. doi: 10.1016/j.cub.2017.07.071. Epub 2017 Aug 31.
3
A Multiplexed, Heterogeneous, and Adaptive Code for Navigation in Medial Entorhinal Cortex.
Neuron. 2017 Apr 19;94(2):375-387.e7. doi: 10.1016/j.neuron.2017.03.025. Epub 2017 Apr 6.
5
Gravity orientation tuning in macaque anterior thalamus.
Nat Neurosci. 2016 Dec;19(12):1566-1568. doi: 10.1038/nn.4423. Epub 2016 Oct 24.
6
Head Direction Cell Activity Is Absent in Mice without the Horizontal Semicircular Canals.
J Neurosci. 2016 Jan 20;36(3):741-54. doi: 10.1523/JNEUROSCI.3790-14.2016.
7
Neural encoding of large-scale three-dimensional space-properties and constraints.
Front Psychol. 2015 Jul 14;6:927. doi: 10.3389/fpsyg.2015.00927. eCollection 2015.
9
Three-dimensional head-direction coding in the bat brain.
Nature. 2015 Jan 8;517(7533):159-64. doi: 10.1038/nature14031. Epub 2014 Dec 3.
10
Self-motion improves head direction cell tuning.
J Neurophysiol. 2014 Jun 15;111(12):2479-92. doi: 10.1152/jn.00512.2013. Epub 2014 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验