Suppr超能文献

在 3D 环境中导航的啮齿动物中海马空间细胞的建模。

Modeling hippocampal spatial cells in rodents navigating in 3D environments.

机构信息

Computational Neuroscience Lab, Indian Institute of Technology Madras, Chennai, 600036, India.

Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.

出版信息

Sci Rep. 2024 Jul 19;14(1):16714. doi: 10.1038/s41598-024-66755-x.

Abstract

Studies on the neural correlates of navigation in 3D environments are plagued by several issues that need to be solved. For example, experimental studies show markedly different place cell responses in rats and bats, both navigating in 3D environments. In this study, we focus on modelling the spatial cells in rodents in a 3D environment. We propose a deep autoencoder network to model the place and grid cells in a simulated agent navigating in a 3D environment. The input layer to the autoencoder network model is the HD layer, which encodes the agent's HD in terms of azimuth (θ) and pitch angles (ϕ). The output of this layer is given as input to the Path Integration (PI) layer, which computes displacement in all the preferred directions. The bottleneck layer of the autoencoder model encodes the spatial cell-like responses. Both grid cell and place cell-like responses are observed. The proposed model is verified using two experimental studies with two 3D environments. This model paves the way for a holistic approach using deep neural networks to model spatial cells in 3D navigation.

摘要

在三维环境中进行导航的神经相关性研究存在几个需要解决的问题。例如,实验研究表明,在三维环境中导航的大鼠和蝙蝠的位置细胞反应明显不同。在这项研究中,我们专注于在三维环境中对啮齿动物的空间细胞进行建模。我们提出了一个深度自动编码器网络来模拟在三维环境中导航的模拟代理中的位置和网格细胞。自动编码器网络模型的输入层是 HD 层,它根据方位角(θ)和俯仰角(ϕ)对代理的 HD 进行编码。该层的输出作为输入提供给路径积分(PI)层,该层计算所有首选方向上的位移。自动编码器模型的瓶颈层对空间细胞样反应进行编码。观察到网格细胞和位置细胞样反应。使用两个具有两个三维环境的实验研究对所提出的模型进行了验证。该模型为使用深度神经网络对三维导航中的空间细胞进行整体建模铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86c5/11271631/8e7c3018ffff/41598_2024_66755_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验