Hu Qingwen
Department of Mathematical Sciences, The University of Texas at Dallas, 800 W. Campbell Road, FO. 35, Richardson, TX, 75080, USA.
Math Biosci Eng. 2018 Aug 1;15(4):863-882. doi: 10.3934/mbe.2018039.
We model intracellular regulatory dynamics with threshold-type state-dependent delay and investigate the effect of the state-dependent diffusion time. A general model which is an extension of the classical differential equation models with constant or zero time delays is developed to study the stability of steady state, the occurrence and stability of periodic oscillations in regulatory dynamics. Using the method of multiple time scales, we compute the normal form of the general model and show that the state-dependent diffusion time may lead to both supercritical and subcritical Hopf bifurcations. Numerical simulations of the prototype model of Hes1 regulatory dynamics are given to illustrate the general results.
我们用阈值型状态依赖延迟对细胞内调节动力学进行建模,并研究状态依赖扩散时间的影响。我们开发了一个一般模型,它是具有恒定或零时间延迟的经典微分方程模型的扩展,用于研究稳态的稳定性、调节动力学中周期振荡的发生和稳定性。使用多时间尺度方法,我们计算了一般模型的范式,并表明状态依赖扩散时间可能导致超临界和亚临界霍普夫分岔。给出了Hes1调节动力学原型模型的数值模拟以说明一般结果。