Wang Guiyuan, Yang Zhuoqin, Turcotte Marc
School of Mathematics and Systems Science and LMIB, Beihang University, Beijing, 100191, China.
College of Sciences, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, P.R. China.
Bull Math Biol. 2020 Mar 31;82(4):46. doi: 10.1007/s11538-020-00722-1.
Time delays play important roles in genetic regulatory networks. In this paper, a gene regulatory network model with time delays and mutual inhibition is considered, where time delays are regarded as bifurcation parameters. In the first part of this paper, we analyze the associated characteristic equations and obtain the conditions for the stability of the system and the existence of Hopf bifurcations in five special cases. Explicit formulas are given to determine the direction and stability of the Hopf bifurcation by using the normal form method and the center manifold theorem. Numerical simulations are then performed to illustrate the results we obtained. In the second part of the paper, using time-delayed stochastic numerical simulations, we study the impact of biological fluctuations on the system and observe that, in modest noise regimes, unexpectedly, noise acts to stabilize the otherwise destabilized oscillatory system.
时间延迟在基因调控网络中起着重要作用。本文考虑了一个具有时间延迟和相互抑制的基因调控网络模型,其中时间延迟被视为分岔参数。在本文的第一部分,我们分析了相关的特征方程,并在五种特殊情况下获得了系统稳定性和霍普夫分岔存在的条件。通过使用范式方法和中心流形定理,给出了确定霍普夫分岔方向和稳定性的显式公式。然后进行了数值模拟以说明我们得到的结果。在本文的第二部分,使用时间延迟随机数值模拟,我们研究了生物波动对系统的影响,并观察到,在适度的噪声范围内,出乎意料的是,噪声起到了稳定原本不稳定的振荡系统的作用。