Satellite Operation & Application Center, Korea Aerospace Research Institute, 169-84 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, Republic of Korea.
Applied Plant Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186757, Republic of Korea.
Sci Rep. 2018 Oct 31;8(1):16121. doi: 10.1038/s41598-018-34550-0.
To meet the growing demands of staple crops with a strategy to develop amicable strategic measures that support efficient North Korean relief policies, it is a desirable task to accurately simulate the yield of paddy (Oryza sativa), an important Asian food commodity. We aim to address this with a grid-based crop simulation model integrated with satellite imagery that enables us to monitor the crop productivity of North Korea. Vegetation Indices (VIs), solar insolation, and air temperature data are thus obtained from the Communication Ocean and Meteorological Satellite (COMS), including the reanalysis data of the Korea Local Analysis and Prediction System (KLAPS). Paddy productivities for North Korea are projected based on the bidirectional reflectance distribution function-adjusted VIs and the solar insolation using the grid GRAMI-rice model. The model is calibrated on a 500-m grid paddy field in Cheorwon, and the model simulation performance accuracy is verified for Cheorwon and Paju, located at the borders of North Korea using four years of data from 2011 to 2014. Our results show that the paddy yields are reproduced reasonably accurately within a statistically significant range of accuracy, in comparison with observation data in Cheorwon (p = 0.183), Paju (p = 0.075), and NK (p = 0.101) according to a statistical t-test procedure. We advocate that incorporating a crop model with satellite images for crop yield simulations can be utilised as a reliable estimation technique for the monitoring of crop productivity, particularly in unapproachable, data-sparse regions not only in North Korea, but globally, where estimations of paddy productivity can assist in planning of agricultural activities that support regionally amicable food security strategies.
为了满足主要农作物的增长需求,制定支持朝鲜高效救济政策的友好战略措施,准确模拟水稻(Oryza sativa)的产量是一项理想的任务,水稻是亚洲重要的粮食商品。我们的目标是通过与卫星图像集成的基于网格的作物模拟模型来实现这一目标,从而能够监测朝鲜的作物生产力。因此,从 Communication Ocean and Meteorological Satellite(COMS)中获取植被指数(VIs)、太阳辐射和空气温度数据,包括 Korea Local Analysis and Prediction System(KLAPS)的再分析数据。根据双向反射分布函数调整的 VIs 和太阳辐射,利用网格 GRAMI-rice 模型预测朝鲜的水稻产量。该模型在 Cheorwon 的一个 500m 网格稻田上进行校准,并使用 2011 年至 2014 年四年的数据验证了 Cheorwon 和 Paju 的模型模拟性能精度,这两个地区都位于朝鲜边境。我们的结果表明,与 Cheorwon(p = 0.183)、Paju(p = 0.075)和 NK(p = 0.101)的观测数据相比,在统计上显著的精度范围内,该模型能够合理准确地再现水稻产量,根据统计 t 检验程序。我们主张,将作物模型与卫星图像相结合进行作物产量模拟,可以作为监测作物生产力的可靠估计技术,特别是在朝鲜以及全球范围内难以接近、数据稀疏的地区,因为对水稻产量的估计可以帮助规划支持区域友好粮食安全战略的农业活动。