Suppr超能文献

预测地面数据稀疏地区的水稻产量:一个可转移的框架及其在朝鲜的应用。

Predicting rice productivity for ground data-sparse regions: A transferable framework and its application to North Korea.

机构信息

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; International Center for Climate and Global Change Research, College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL 36849, USA.

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China.

出版信息

Sci Total Environ. 2024 Oct 10;946:174227. doi: 10.1016/j.scitotenv.2024.174227. Epub 2024 Jun 25.

Abstract

The use of observation-dependent methods for crop productivity and food security assessment is challenging in data-sparse regions. This study presents a transferable framework and applies it to North Korea (NK) to assess rice productivity based on climate similarity, transferable machine-learning techniques, and extendable multi-source data. We initially divided the primary phenological stages of rice in the study region and extracted dynamic rice distributions based on Moderate Resolution Imaging Spectroradiometer products and phenological observations. We compared the performances of four representative environmentally driven models (Linear Regression, back-propagation Neural Network, Support Vector Machine, and Random Forest) in simulating rice productivity using an extensive dataset that included multi-angle vegetation monitoring, climate variables, and planting distribution information. The framework integrated an optimal environmentally driven model with agricultural management practices for transferability to predict rice productivity in NK over multiple years. Additionally, two crop growth scenarios (whole growth period (WGP) and seeding-heading period (SHP)) were compared to assess pre-harvest forecasting capabilities and identify dominant factors. Finally, independent datasets from the Food and Agriculture Organization, World Food Program, and Global Gridded Crop Models were used to validate the magnitude and spatial distribution of the predicted results. The results showed that phenological identification based on remote sensing can accurately capture rice growth characteristics and map rice distribution. Random Forest outperformed other models in simulating rice productivity variation, with r-squares of 0.87 and 0.83 in the WGP and SHP, respectively. The solar-induced chlorophyll fluorescence, maximum temperature, and evapotranspiration collectively determined approximately 40 % of the variation in yield simulated using Random Forest. Conversely, planting areas contributed over 42 % of the variation in rice production. Compared to Food and Agriculture Organization statistics, the environmentally driven framework explained 78.72 % and 76.89 % of the production variation and 69.42 % and 71.15 % of the yield variation in NK under the WGP and SHP, respectively. Moreover, the environmental management-driven framework captured over 90 % of the yield variation. The predicted spatial pattern of rice productivity exhibited significant concordance with the World Food Program and Global Gridded Crop Model reports. In summary, the proposed transferable framework for crop productivity assessment contributes to early warnings of production reduction and has the potential for scalability across various crops and data-sparse regions.

摘要

在数据匮乏地区,使用依赖观测的方法评估作物产量和粮食安全具有挑战性。本研究提出了一个可转移的框架,并将其应用于朝鲜(NK),基于气候相似性、可转移的机器学习技术和可扩展的多源数据评估水稻产量。我们首先在研究区域划分水稻的主要物候阶段,并基于中分辨率成像光谱仪产品和物候观测提取动态水稻分布。我们比较了四种具有代表性的环境驱动模型(线性回归、反向传播神经网络、支持向量机和随机森林)在使用包括多角度植被监测、气候变量和种植分布信息的广泛数据集模拟水稻产量方面的性能。该框架将最优环境驱动模型与农业管理实践相结合,以提高可转移性,从而预测 NK 多年的水稻产量。此外,还比较了两个作物生长情景(整个生长期(WGP)和播种-抽穗期(SHP)),以评估收获前预测能力并确定主导因素。最后,使用来自粮食及农业组织、世界粮食计划署和全球网格化作物模型的独立数据集验证预测结果的幅度和空间分布。结果表明,基于遥感的物候识别可以准确捕捉水稻生长特征并绘制水稻分布。随机森林在模拟水稻产量变化方面表现优于其他模型,在 WGP 和 SHP 中的 r 平方分别为 0.87 和 0.83。太阳诱导叶绿素荧光、最高温度和蒸散量共同决定了随机森林模拟产量变化的约 40%。相反,种植面积对水稻产量变化的贡献超过 42%。与粮食及农业组织统计数据相比,环境驱动框架分别解释了 NK 下 WGP 和 SHP 中产量变化的 78.72%和 76.89%,以及产量变化的 69.42%和 71.15%。此外,环境管理驱动框架捕捉到了超过 90%的产量变化。水稻产量的预测空间格局与世界粮食计划署和全球网格化作物模型报告具有显著的一致性。总之,提出的作物产量评估可转移框架有助于提前预警减产,并具有在不同作物和数据匮乏地区扩展的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验