Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, 48201, USA.
Department of Comparative Biosciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, 53706, USA.
Sci Rep. 2018 Oct 31;8(1):16116. doi: 10.1038/s41598-018-34414-7.
Despite concerted efforts over decades, the etiology of multiple sclerosis (MS) remains unclear. Autoimmunity, environmental-challenges, molecular mimicry and viral hypotheses have proven equivocal because early-stage disease is typically presymptomatic. Indeed, most animal models of MS also lack defined etiologies. We have developed a novel adult-onset oligodendrogliopathy using a delineated metabolic stress etiology in myelinating cells, and our central question is, "how much of the pathobiology of MS can be recapitulated in this model?" The analyses described herein demonstrate that innate immune activation, glial scarring, cortical and hippocampal damage with accompanying electrophysiological, behavioral and memory deficits naturally emerge from disease progression. Molecular analyses reveal neurofilament changes in normal-appearing gray matter that parallel those in cortical samples from MS patients with progressive disease. Finally, axon initial segments of deep layer pyramidal neurons are perturbed in entorhinal/frontal cortex and hippocampus from OBiden mice, and computational modeling provides insight into vulnerabilities of action potential generation during demyelination and early remyelination. We integrate these findings into a working model of corticohippocampal circuit dysfunction to predict how myelin damage might eventually lead to cognitive decline.
尽管数十年来一直在努力,但多发性硬化症 (MS) 的病因仍不清楚。自身免疫、环境挑战、分子模拟和病毒假说已被证明是不确定的,因为早期疾病通常是无症状的。事实上,大多数 MS 的动物模型也缺乏明确的病因。我们使用髓鞘细胞明确的代谢应激病因开发了一种新的成人发病少突胶质病,我们的核心问题是,“在这种模型中可以再现 MS 的多少病理生物学?”本文所述的分析表明,固有免疫激活、神经胶质瘢痕形成、皮质和海马损伤伴随着伴随的电生理、行为和记忆缺陷,自然会从疾病进展中出现。分子分析显示,正常外观灰质中的神经丝变化与进行性疾病 MS 患者的皮质样本中的变化平行。最后,OBiden 小鼠的内嗅/额皮质和海马中的深层层状锥体神经元的轴突起始段受到干扰,计算模型提供了对脱髓鞘和早期髓鞘再生过程中动作电位产生的脆弱性的深入了解。我们将这些发现整合到皮质海马回路功能障碍的工作模型中,以预测髓磷脂损伤最终如何导致认知能力下降。