Suppr超能文献

一种机器学习方法,用于预测儿科哮喘急诊分诊时需要住院治疗的情况。

A Machine Learning Approach to Predicting Need for Hospitalization for Pediatric Asthma Exacerbation at the Time of Emergency Department Triage.

机构信息

Division of Emergency Medicine, Children's National Health System, Washington, DC, UK.

Rotageek, London, UK.

出版信息

Acad Emerg Med. 2018 Dec;25(12):1463-1470. doi: 10.1111/acem.13655. Epub 2018 Nov 29.

Abstract

OBJECTIVES

Pediatric asthma is a leading cause of emergency department (ED) utilization and hospitalization. Earlier identification of need for hospital-level care could triage patients more efficiently to high- or low-resource ED tracks. Existing tools to predict disposition for pediatric asthma use only clinical data, perform best several hours into the ED stay, and are static or score-based. Machine learning offers a population-specific, dynamic option that allows real-time integration of available nonclinical data at triage. Our objective was to compare the performance of four common machine learning approaches, incorporating clinical data available at the time of triage with information about weather, neighborhood characteristics, and community viral load for early prediction of the need for hospital-level care in pediatric asthma.

METHODS

Retrospective analysis of patients ages 2 to 18 years seen at two urban pediatric EDs with asthma exacerbation over 4 years. Asthma exacerbation was defined as receiving both albuterol and systemic corticosteroids. We included patient features, measures of illness severity available in triage, weather features, and Centers for Disease Control and Prevention influenza patterns. We tested four models: decision trees, LASSO logistic regression, random forests, and gradient boosting machines. For each model, 80% of the data set was used for training and 20% was used to validate the models. The area under the receiver operating characteristic (AUC) curve was calculated for each model.

RESULTS

There were 29,392 patients included in the analyses: mean (±SD) age of 7.0 (±4.2) years, 42% female, 77% non-Hispanic black, and 76% public insurance. The AUCs for each model were: decision tree 0.72 (95% confidence interval [CI] = 0.66-0.77), logistic regression 0.83 (95% CI = 0.82-0.83), random forests 0.82 (95% CI = 0.81-0.83), and gradient boosting machines 0.84 (95% CI = 0.83-0.85). In the lowest decile of risk, only 3% of patients required hospitalization; in the highest decile this rate was 100%. After patient vital signs and acuity, age and weight, followed by socioeconomic status (SES) and weather-related features, were the most important for predicting hospitalization.

CONCLUSIONS

Three of the four machine learning models performed well with decision trees preforming the worst. The gradient boosting machines model demonstrated a slight advantage over other approaches at predicting need for hospital-level care at the time of triage in pediatric patients presenting with asthma exacerbation. The addition of weight, SES, and weather data improved the performance of this model.

摘要

目的

儿科哮喘是急诊科(ED)就诊和住院的主要原因。更早地识别需要医院级别的护理可以更有效地将患者分诊到高资源或低资源 ED 科室。现有的预测儿科哮喘患者转归的工具仅使用临床数据,在 ED 住院数小时后表现最佳,且为静态或评分型。机器学习提供了一种特定于人群的、动态的选择,允许在分诊时实时整合可用的非临床数据。我们的目标是比较四种常见的机器学习方法的性能,这些方法将分诊时可用的临床数据与天气、社区特征和社区病毒载量信息结合起来,早期预测儿科哮喘患者对医院级护理的需求。

方法

对 4 年来在两家城市儿科 ED 就诊的 2 至 18 岁哮喘加重的患者进行回顾性分析。哮喘加重定义为接受沙丁胺醇和全身皮质类固醇治疗。我们纳入了患者特征、分诊时可用的疾病严重程度指标、天气特征和疾病控制与预防中心流感模式。我们测试了四种模型:决策树、LASSO 逻辑回归、随机森林和梯度提升机。对于每个模型,数据集的 80%用于训练,20%用于验证模型。计算了每个模型的接收者操作特征(ROC)曲线下面积(AUC)。

结果

共纳入 29392 例患者:平均(±标准差)年龄为 7.0(±4.2)岁,42%为女性,77%为非西班牙裔黑人,76%为公共保险。每个模型的 AUC 分别为:决策树 0.72(95%置信区间[CI]为 0.66-0.77)、逻辑回归 0.83(95%CI为 0.82-0.83)、随机森林 0.82(95%CI为 0.81-0.83)和梯度提升机 0.84(95%CI为 0.83-0.85)。在风险最低的十分位数中,只有 3%的患者需要住院治疗;在风险最高的十分位数中,这一比例为 100%。在患者生命体征和严重程度、年龄和体重之后,社会经济地位(SES)和与天气相关的特征对预测住院率最重要。

结论

四种机器学习模型中的三种模型表现良好,决策树表现最差。在预测儿科哮喘患者就诊时需要医院级护理的需求方面,梯度提升机模型略优于其他方法。增加体重、SES 和天气数据可提高该模型的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验