Suppr超能文献

微小 RNA-30a 作为新生儿高氧肺损伤性别特异性差异的潜在候选物:对 BPD 的影响。

MicroRNA-30a as a candidate underlying sex-specific differences in neonatal hyperoxic lung injury: implications for BPD.

机构信息

Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas.

Advanced Technology Cores, Baylor College of Medicine , Houston, Texas.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2019 Jan 1;316(1):L144-L156. doi: 10.1152/ajplung.00372.2018. Epub 2018 Nov 1.

Abstract

Premature male neonates are at a greater risk of developing bronchopulmonary dysplasia (BPD). The reasons underlying sexually dimorphic outcomes in premature neonates are not known. The role of miRNAs in mediating sex biases in BPD is understudied. Analysis of the pulmonary transcriptome revealed that a large percentage of angiogenesis-related differentially expressed genes are miR-30a targets. We tested the hypothesis that there is differential expression of miR-30a in vivo and in vitro in neonatal human pulmonary microvascular endothelial cells (HPMECs) upon exposure to hyperoxia. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia [95% fraction of inspired oxygen (Fi), postnatal day ( PND) 1-5] and euthanized on PND 7 and 21. HPMECs (18-24-wk gestation donors) were subjected to hyperoxia (95% O and 5% CO) or normoxia (air and 5% CO) up to 72 h. miR-30a expression was increased in both males and females in the acute phase ( PND 7) after hyperoxia exposure. However, at PND 21 (recovery phase), female mice showed significantly higher miR-30a expression in the lungs compared with male mice. Female HPMECs showed greater expression of miR-30a in vitro upon exposure to hyperoxia. Delta-like ligand 4 (Dll4) was an miR-30a target in HPMECs and showed sex-specific differential expression. miR-30a increased angiogenic sprouting in vitro in female HPMECs. Lastly, we show decreased expression of miR-30a and increased expression of DLL4 in human BPD lung samples compared with controls. These results support the hypothesis that miR-30a could, in part, contribute to the sex-specific molecular mechanisms in play that lead to the sexual dimorphism in BPD.

摘要

早产儿患支气管肺发育不良(BPD)的风险更大。导致早产儿出现性别二态性结果的原因尚不清楚。miRNA 在介导 BPD 中的性别偏倚中的作用尚未得到充分研究。肺部转录组分析显示,很大一部分血管生成相关差异表达基因是 miR-30a 的靶标。我们检验了这样一个假设,即在暴露于高氧环境中时,新生男性和女性人类肺微血管内皮细胞(HPMEC)中存在 miR-30a 的差异表达。新生雄性和雌性 C57BL/6 小鼠(C57BL/6)暴露于高氧环境(95%吸入氧气分数(Fi),出生后第 1-5 天),并于出生后第 7 天和第 21 天安乐死。HPMEC(18-24 周龄供体)暴露于高氧(95% O 和 5% CO)或常氧(空气和 5% CO)环境中,最长可达 72 小时。在高氧暴露后的急性期(出生后第 7 天),雄性和雌性小鼠的 miR-30a 表达均增加。然而,在恢复期(出生后第 21 天),与雄性小鼠相比,雌性小鼠的肺部显示出 miR-30a 表达显著增加。暴露于高氧时,雌性 HPMEC 中的 miR-30a 表达增加。DLL4 是 HPMEC 中的 miR-30a 靶标,并且表现出性别特异性差异表达。miR-30a 增加了体外雌性 HPMEC 的血管生成发芽。最后,我们发现与对照组相比,人类 BPD 肺组织样本中的 miR-30a 表达降低,DLL4 表达增加。这些结果支持了这样一个假设,即 miR-30a 可能部分导致了导致 BPD 中性别二态性的性别特异性分子机制。

相似文献

1
MicroRNA-30a as a candidate underlying sex-specific differences in neonatal hyperoxic lung injury: implications for BPD.
Am J Physiol Lung Cell Mol Physiol. 2019 Jan 1;316(1):L144-L156. doi: 10.1152/ajplung.00372.2018. Epub 2018 Nov 1.
2
Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury.
Biol Sex Differ. 2023 Aug 8;14(1):50. doi: 10.1186/s13293-023-00535-6.
3
Role of Axis in Neonatal Hyperoxic Lung Injury.
Oxid Med Cell Longev. 2019 Oct 22;2019:8327486. doi: 10.1155/2019/8327486. eCollection 2019.
4
Pulmonary endothelial cells exhibit sexual dimorphism in their response to hyperoxia.
Am J Physiol Heart Circ Physiol. 2018 Nov 1;315(5):H1287-H1292. doi: 10.1152/ajpheart.00416.2018. Epub 2018 Aug 10.
5
Sexual dimorphism of the pulmonary transcriptome in neonatal hyperoxic lung injury: identification of angiogenesis as a key pathway.
Am J Physiol Lung Cell Mol Physiol. 2017 Dec 1;313(6):L991-L1005. doi: 10.1152/ajplung.00230.2017. Epub 2017 Aug 17.
6
Sex-specific differences in neonatal hyperoxic lung injury.
Am J Physiol Lung Cell Mol Physiol. 2016 Aug 1;311(2):L481-93. doi: 10.1152/ajplung.00047.2016. Epub 2016 Jun 24.
8
Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension.
J Pathol. 2020 Dec;252(4):411-422. doi: 10.1002/path.5534. Epub 2020 Oct 6.
9
Sex-specific differences in the modulation of Growth Differentiation Factor 15 (GDF15) by hyperoxia in vivo and in vitro: Role of Hif-1α.
Toxicol Appl Pharmacol. 2017 Oct 1;332:8-14. doi: 10.1016/j.taap.2017.07.016. Epub 2017 Jul 20.
10
Role of sex as a biological variable in neonatal alveolar macrophages.
Redox Biol. 2024 Sep;75:103296. doi: 10.1016/j.redox.2024.103296. Epub 2024 Aug 2.

引用本文的文献

1
Sex, hormones, and lung health.
Physiol Rev. 2025 Aug 6. doi: 10.1152/physrev.00026.2024.
2
Therapeutic nanoparticle safety in pregnancy: Bridging knowledge gaps with environmental insights and a translational roadmap.
J Control Release. 2025 Sep 10;385:114026. doi: 10.1016/j.jconrel.2025.114026. Epub 2025 Jul 10.
3
The nitrofen/bisdiamine murine model of congenital diaphragmatic hernia has a pulmonary hypertension vascular phenotype consistent with human CDH.
Am J Physiol Lung Cell Mol Physiol. 2025 Jul 1;329(1):L48-L60. doi: 10.1152/ajplung.00233.2024. Epub 2025 May 30.
5
Research progress of microvascular development in bronchopulmonary dysplasia.
Pediatr Investig. 2024 Jul 12;8(4):299-312. doi: 10.1002/ped4.12441. eCollection 2024 Dec.
6
miRNA Signatures in Bronchopulmonary Dysplasia: Implications for Biomarkers, Pathogenesis, and Therapeutic Options.
Front Biosci (Landmark Ed). 2024 Jul 25;29(7):271. doi: 10.31083/j.fbl2907271.
7
Modulation of recovery from neonatal hyperoxic lung injury by sex as a biological variable.
Redox Biol. 2023 Dec;68:102933. doi: 10.1016/j.redox.2023.102933. Epub 2023 Oct 18.
8
Multiomic Investigations into Lung Health and Disease.
Microorganisms. 2023 Aug 19;11(8):2116. doi: 10.3390/microorganisms11082116.
9
Loss of microRNA-30a and sex-specific effects on the neonatal hyperoxic lung injury.
Biol Sex Differ. 2023 Aug 8;14(1):50. doi: 10.1186/s13293-023-00535-6.
10
Loss of growth differentiation factor 15 exacerbates lung injury in neonatal mice.
Am J Physiol Lung Cell Mol Physiol. 2023 Sep 1;325(3):L314-L326. doi: 10.1152/ajplung.00086.2023. Epub 2023 Jun 27.

本文引用的文献

1
Neonatal hyperoxia depletes pulmonary vein cardiomyocytes in adult mice via mitochondrial oxidation.
Am J Physiol Lung Cell Mol Physiol. 2018 May 1;314(5):L846-L859. doi: 10.1152/ajplung.00409.2017. Epub 2018 Jan 18.
3
miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions.
Nucleic Acids Res. 2018 Jan 4;46(D1):D296-D302. doi: 10.1093/nar/gkx1067.
4
Interrelation of androgen receptor and miR-30a and miR-30a function in ER, PR, AR MDA-MB-453 breast cancer cells.
Oncol Lett. 2017 Oct;14(4):4930-4936. doi: 10.3892/ol.2017.6781. Epub 2017 Aug 21.
5
Pulmonary sequelae and functional limitations in children and adults with bronchopulmonary dysplasia.
Paediatr Respir Rev. 2018 Mar;26:55-59. doi: 10.1016/j.prrv.2017.07.002. Epub 2017 Aug 24.
6
Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia.
Am J Physiol Lung Cell Mol Physiol. 2017 Dec 1;313(6):L1101-L1153. doi: 10.1152/ajplung.00343.2017. Epub 2017 Sep 28.
7
Sexual dimorphism of the pulmonary transcriptome in neonatal hyperoxic lung injury: identification of angiogenesis as a key pathway.
Am J Physiol Lung Cell Mol Physiol. 2017 Dec 1;313(6):L991-L1005. doi: 10.1152/ajplung.00230.2017. Epub 2017 Aug 17.
8
Restoration of miR-30a expression inhibits growth, tumorigenicity of medulloblastoma cells accompanied by autophagy inhibition.
Biochem Biophys Res Commun. 2017 Sep 30;491(4):946-952. doi: 10.1016/j.bbrc.2017.07.140. Epub 2017 Jul 27.
10
TGF-β-induced hepatocyte lincRNA-p21 contributes to liver fibrosis in mice.
Sci Rep. 2017 Jun 7;7(1):2957. doi: 10.1038/s41598-017-03175-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验